
© Upsolver Ltd. | www.upsolver.com | 115 Hashmonaim St., Tel Aviv, Israel

Databricks Delta Lake vs Data Lake ETL:
Overview and Comparison

Technical Whitepaper:

Executive Summary
Earlier this year, Databricks released Delta Lake to open source. Described as ‘a transactional storage
layer’ that runs on top of cloud or on-premise object storage, Delta Lake promises to add a layer or
reliability to organizational data lakes by enabling ACID transactions, data versioning and rollback.

In this article we’ll take a closer look at Delta Lake and compare it to a data lake ETL approach, in which
data transformations are performed in the lake rather than by a separate storage layer. Obviously, we
have a horse in this race since Upsolver is a data lake ETL platform; readers are welcomed to
scrutinize our claims and test them against their own real-world scenarios.

The Challenge of Storing Transactional Data in a Data Lake
With all the talk surrounding data lakes, it can be easy to forget that what we’re essentially talking about
is files stored in a folder (e.g. on Amazon S3). As we’ve previously explained, in a data lake approach
you store all your raw data on inexpensive, decoupled object storage, and then employ a variety of
analytics and data management tools to transform, analyze and drive value from the data.

Since the storage layer is composed of files partitioned by time rather than tables with primary and
foreign keys, data lakes are traditionally seen as append-only. The lack of indices means that in order to
delete or update a specific record, a query engine will need to scan every single record in the lake which
isn’t a reasonable solution.

Because data lakes are so difficult to update, they are often seen as less desirable for transactional use
cases - for example:

•	 Data that needs to be frequently updated - such as sensitive customer information that might need
to be deleted due to GDPR requests

•	 Data that must be absolutely reliable, such as financial transactions that could be cancelled due to
charge-backs and fraud

•	 Reflecting changes in operational databases via change data capture (CDC)

Delta Lake purports to address these and similar scenarios - let’s talk about how.

that sense, and I personally don’t trust one vendor to deliver SQL analytics, streaming, machine
learning, text search, etc. There is too much innovation in data analysis for me to opt-out of it for
one vendor.

https://www.zdnet.com/article/a-standard-for-storing-big-data-apache-spark-creators-release-open-source-delta-lake/
https://www.zdnet.com/article/a-standard-for-storing-big-data-apache-spark-creators-release-open-source-delta-lake/
https://www.upsolver.com/data-lake-platform
https://www.upsolver.com/blog/understanding-data-lakes-and-data-lake-platforms

© Upsolver Ltd. | www.upsolver.com | 115 Hashmonaim St., Tel Aviv, Israel

The Delta Lake Solution
Going off the materials Databricks has published online, as well as the coverage in various media
outlets, we can get a pretty good impression of how Delta Lake works.

Basically, Delta Lake is a file system that stores batch and streaming data on object storage, along with
Delta metadata for table structure and schema enforcement.

Getting data into the lake is done with Delta ACID API and getting data out of the lake is done with Delta
JDBC connector. The data is Delta is not queryable by other SQL query engines like AWS Athena,
Redshift Spectrum, Apache Presto and vanilla SparkSQL.

If this sounds a lot like a database built on decoupled architecture, that’s probably not a coincidence.
While the word “database” is notably absent from the documentation and marketing materials related
to Delta Lake, it’s safe to say that the software behaves very similarly to decoupled databases such as
Snowflake and BigQuery: a separate transactional layer on object storage with proprietary metadata,
ACID API and JDBC connector.

To understand how this differs from a data lake ETL approach, let’s look at what the latter entails:

The Data Lake ETL Solution
A data lake ETL solution needs to plug
into an existing stack and not introduce
new proprietary APIs. Hence, ingestion is
performed using connectors and queries
are performed by any query engine like
AWS Athena, Redshift Spectrum, Apache
Presto and SparkSQL. Metadata stores
like Hive Metastore or AWS Glue are
used to expose table schema for data on
object storage.

Delta Lake

Delta Metadat

Lake ETL

Delta JDBCDelta ACID API

Ingestion
Connectors

Object
Storage

Object
Storage

Any Metadata
Store

(Glue, Hive)

Any SQL Query Engine
(Athena, Presto, SparkSQL)

© Upsolver Ltd. | www.upsolver.com | 115 Hashmonaim St., Tel Aviv, Israel

The challenge for data lake ETLs is how
to keep the table-data consistent in
real-time for queries while maintaining
good performance. This is how Upsolver
does it (using Athena as an example of a
query engine):

1.	A user in Upsolver creates an ETL job,
with the purpose of transforming raw
data to a table in Athena with a
primary key.

2.	Metadata - Upsolver’s engine creates a
table and a view in the AWS Glue
metadata store. The table has 2 types
of partitions: 1 for inserts (new keys)
and 1 for updates/deletes.

3.	Data - Upsolver’s engine writes the
table-data to object storage using the
standard data lake append-only
model. By keeping an index for the
table primary key, it’s possible to route
each row to the right partition (insert
or update or delete).

4.	Query - a user in Athena will see the
new table and view in the Athena
console since Athena is integrated
with the AWS Glue Data Catalog.
Queries will run against the view
(and not the table) that joins insert,
update and delete rows from
different partitions and returns
exactly 1 row per key.

5.	Performance - this part is the
trickiest to execute. As we recall,
data lakes don’t include indexing
and join of 2 large tables is not
recommended. Therefore the view’s
performance will deteriorate as the
number of updates/deletes will grow
in the partition. That’s why Upsolver
rewrites the data every minute, (in a
process called compaction. Read
more about compaction in dealing
with small files), merging the
updates/deletes into the original
data. This process keeps the number
of updates/deletes on the low side
so the view queries run fast.

CDC in a Data Lake

The Data Lake ETL Solution

Lock-in to one query engine
Delta Lake tables are a combination of Parquet based storage, a Delta transaction log and Delta indexes
which can only be written/read by a Delta cluster. This goes against the basic logic of a data lake which is
meant to allow users to work with data their way, using a wide variety of services per use case.

https://www.upsolver.com/blog/small-file-problem-hdfs-s3
https://www.upsolver.com/blog/small-file-problem-hdfs-s3

© Upsolver Ltd. | www.upsolver.com | 115 Hashmonaim St., Tel Aviv, Israel

To use Delta Lake, it’s necessary to change
ingestion to use Delta ACID API and run
queries using the Delta JDBC. Use of AWS
Athena / Apache Presto / vanilla SparkSQL is
not possible for Delta tables since their
metadata isn’t available in AWS
Glue / Hive Metastore.

Data lake ETLs only make changes to the
underlying table data so there is no lock-in
and any SQL engine can be used to query the
data. Replacing a vendor for Lake ETLs doesn’t
require changing ingestion or query APIs

Ingestion Performance
Lake ETLs will out-perform Delta by an order
of magnitude since they perform append-only
writes to object storage while Delta needs to
update indexes for each ACID transaction.

Ease-of-use
The Delta Lake approach offers a simple
insert/update/delete API but requires a
project to change existing ingestion and query
interfaces
to Delta.

While data lake ETL requires a significant ETL
effort as explained above- especially when it
comes to dealing with small files - platforms
like Upsolver can be used to reduce this effort
to nothing:

Summary

Delta Lake Lake ETLs

Lock-in High. Need to change ingestion and
query interfaced to Delta and isn’t
queryable from Athena / Presto /
SparkSQL.

Low. No change in interfaces and
no proprietary metadata Lake ETL
vendor can be replaced with
home-grown ETL.

Ingestion performance Low. ACID transactions and indexes. High. Append-only writes.

Ease-of-use Medium. ACID Operations replace ETLs
but all ingestions and query interfaces
need to be migrated to Delta.
Delta requires a DBA for operations like
Vaccum and optimize.

Depends on ETL platform Upsolver
offers a turn-key solution,
automating ETLs.

https://www.youtube.com/watch?v=cr8tXLqAa_k
https://www.upsolver.com/blog/small-file-problem-hdfs-s3

