
How to
Interview Engineers

http://triplebyte.com


We do a lot of interviewing at Triplebyte. Indeed, over the last 2 years, I’ve interviewed just over 

900 engineers. Whether this was a good use of my time can be debated! (I sometimes wake up in 

a cold sweat and doubt it.) But regardless, our goal is to improve how engineers are hired. To that 

end, we run background-blind interviews, looking at coding skills, not credentials or resumes. After 

an engineer passes our process, they go straight to the final interview at companies we work with 

(including Apple, Facebook, Dropbox and Stripe). We interview engineers without knowing their 

backgrounds, and then get to see how they do across multiple top tech companies. This gives us, I 

think, some of the best available data on interviewing.

In this blog post, I’m going to present what we’ve learned so far from this data. Technical 

interviewing is broken in a lot of ways. It’s easy to say this. (And many blog posts do!) The hard part 

is coming up with what to do about it. My goal for this post is to take on that challenge, and lay 

out specific advice for hiring managers and CTOs. Interviewing is hard. But I think that many of the 

problems can be fixed by running a careful process [1].

Most interview processes includes two main steps:

Applicant screening

In-person final interview

The goal of applicant screening is to filter out candidates early, and save engineering time in 

interviews. The screening process usually involves a recruiter scanning a candidate’s resume 

(in about 10 seconds), followed by a 30-minute to 1-hour phone call. Eighteen percent of the 

companies we work with also use a take-home programming challenge (either in place of or in 

addition to the phone screen). Screening steps, interestingly, are where the significant majority of 

candidates are rejected. Indeed, across all the companies we work with, over 50% of candidates are 

rejected on the resume scan alone, and another 30% are rejected on the phone screens / take-

home. Screening is also where hiring can be at its most capricious. Recruiters are overwhelmed 

How to Interview Engineers

The Status Quo



with volume, and need to make snap decisions. This is where credentials and pattern matching 

come into play.

In-person final interviews almost-universally consist of a series of 45-minute to 1-hour sessions, 

each with a different interviewer. The sessions are primarily technical (with one or two at each 

company focusing on culture fit and soft skills). The final hire/no hire decisions are made in 

a decision meeting after the candidate has left, with the hiring manager and everyone who 

interviewed the candidate. Essentially, a candidate needs at least one strong advocate and no 

strong detractors to be made an offer [2].

Beyond the common format, however, final interviews vary widely.

39% of the companies we work with run interviews with a marker on a whiteboard

52% allow the candidate to use their own computer (the remaining 9% are inconsistent)

55% let interviewers pick their own questions (the remaining 45% use a standard
bank of questions)

40% need to see academic CS skills in a candidate to make an offer

15% dislike academic CS (and think that talking about CS is a sign that a candidate will not 
be productive)

80% let candidates use any language in the interview (the remaining 20% require a specific 
language)

5% explicitly evaluate language minutia during the interview



Across all the companies we work with, 22% of final interviews result in a job offer. (This figure 

comes from asking companies about their internal candidate pipeline. Candidates applying through 

Triplebyte get offers after 53% of their interviews.) About 65% of offers are accepted (result in a 

hire). After 1 year, companies are very happy with approximately 30% of hires, and have fired about 

5% [3].

So, what’s wrong with the status quo? Fire rates, after all, don’t 

seem to be out of control. To see the problem, consider that 

there are two ways an interview can fail. An interview can result 

in a bad engineer being hired and later fired (a false positive). 

And an interview can disqualify someone who could have done 

that job well (a false negatives). Bad hires are very visible, and 

expensive to a company (in salary, management cost and morale 

for the entire team). A bad hire sucks the energy from a team. 

Candidates who could have done the job well but are not given 

the chance, in contrast, are invisible. Any one case is always 

debatable. Because of this asymmetry, companies heavily bias 

their interviews toward rejection.

This effect is strengthened by noise in the process. Judging 

programming skill in 1 hour is just fundamentally hard. Add to 

this a dose of pattern matching and a few gut calls as well as the 

complex soup of company preferences discussed above, and you’re left with a very noisy signal.

In order to keep the false positive rate low in the face of this noise, companies have to bias 

decisions ever farther toward rejection. The result is a process that misses good engineers, still 

often prefers credentials over real skill, and often feels capricious and frustrating to the people 

involved. If everyone at your company had to re-interview for their current jobs, what percentage 

would pass? This is a scary question. The answer is almost certainly well under 100%. Candidates 

are harmed when they are rejected by companies they could have done great work for, and 

False Negatives vs. False Positives



Decide what skills you’re looking for
There is not a single set of skills that define a good programmer. Rather, there is a sea of diverse 

skill sets. No engineer can be strong in all of these areas. In fact, at Triplebyte we often see 

excellent, successful software engineers with entirely disjoint sets of skills. The first step to running 

a good interview, then, is deciding what skills matter for the role. I recommend you ask yourself the 

following questions (these are questions we ask when we onboard a new company at Triplebyte).

Do you need fast, iterative programmers, or careful rigorous programmers?

Do you want someone motivated by solving technical problems, or building product?

Do you need skill with a particular technology, or can a smart programmer learn it on the job?

Is academic CS / math / algorithm ability important or irrelevant?

Is understanding concurrency / the C memory model / HTTP important?

There are no right answers to these questions. We work with successful companies that come 

down on both sides of each one. But what is key is making an intentional choice, based on your 

needs. The anti-pattern to avoid is simply picking interview questions randomly (or letting each 

interviewer decide). When that happens, company engineering culture can skew in a direction 

where more and more engineers have a particular skill or approach that may not really be important 

for the company, and engineers without this skill (but other important skills) are rejected.

Concrete ways to reduce noise in interviews

companies are harmed when they can’t find the talent they need.

To be clear, I am not saying the companies should lower the bar in interviews. Rejection is the point 

of interviewing! I’m not even saying that companies are wrong to fear false positives far more than 

false negatives. Bad hires are expensive. I am arguing that a noisy signal paired with the need to 

avoid bad hires results in a really high false negative rate, and this harms people. The solution is to 

improve the signal.



Ask questions as close as possible to real work
Professional programmers are hired to solve large, sprawling problems over weeks and months. 

But interviewers don’t have weeks or months to evaluate candidates. Each interviewer typically 

has 1 hour. So instead, interviewers look at a candidates’ ability to solve small problems quickly, 

while under duress. This is a different skill. It is correlated (interviews are not completely random). 

But it’s not perfectly correlated. Minimizing this difference is the goal when developing interview 

questions.

This is achieved by making interview questions as similar as possible to the job you want the 

candidate to do (or to the skill you’re trying to measure). For example, if what you care about is 

back-end programming, asking the candidate to build a simple API endpoint and then add features 

is almost certainly a better question than 

asking them to solve a BFS word chain 

problem. If you care about algorithm ability, 

asking the candidate to apply algorithms to 

a problem (say, build a simple search index, 

perhaps backed by a BST and a hashmap for improved deletion performance) is almost certainly a 

better problem than asking them to determine if a point is contained in a concave polygon. And a 

debugging challenge, where the candidate works in a real codebase, is almost certainly better than 

asking the candidate to solve a small problem on a whiteboard.

That said, there is an argument for doing interviews on whiteboards. As an interviewer, I don’t care 

if an engineer has the Python itertools module memorized. I care if they can think through how 

to use iterators to solve a problem. By having the candidate work on a whiteboard, I free them 

from having to get the exact syntax right, and let them focus on the logic. Ultimately I think this 

argument fails, because there’s just not enough justification for the different format. You can get all 

the benefit by allowing the candidate to work on a computer, but telling them their code does not 

need to run (or even better, making it an open book interview and letting them look up anything 

they want with Google).

There is an important caveat to the idea that interview questions should mirror work. It is important 

that an interview question be free from external dependencies. For example, asking a candidate 

to write a simple web scraper in Ruby might seem like a good real-word problem. However, if a 

Making interview questions as 
similar as possible to the job you 
want the candidate to do



candidate needs to install Nokogiri (a Ruby parsing library that can be a pain to install) and they end 

up burning 30 minutes wrestling with the native extensions, this becomes a horrible interview. Not 

only has time been wasted, stress for the candidate has gone through the roof.

Ask multi-part questions that can’t be given away
Another good rule of thumb for interview questions is to avoid questions that can be “given away”, 

i.e. avoid questions where there’s some magic piece of information that the candidate could have 

read on Glassdoor ahead of time that would allow them to answer easily. This obviously rules 

out brain teasers or any question requiring a leap of insight. But it goes beyond that, and means 

that questions need to be a series of steps that build on each other, not a single central problem. 

Another useful way to think about this is to ask yourself whether you can help a candidate who 

gets stuck, and still end the interview with a positive impression. On a one-step question, if you 

have to give the candidate significant help, they fail. On a multi-part problem, you can help with 

one step, and the candidate can then ace everything else and do well.

This is important not only because your question will leak onto Glassdoor, but also (and more 

importantly) because multi-part problems are less noisy. Good candidates will become stressed and 

get stuck. Being able to help them and see them recover is important. There is significant noise in 

how well a candidate solves any one nugget of programming logic, based on whether they’ve seen 

a similar problem recently, and probably just chance. Multi-part problems smooth out some of that 

noise. They also give candidates the opportunity to see their effort snowball. Effort applied to one 

step often helps them solve a subsequent step. This is an important dynamic when doing real work, 

and capturing it in an interview decreases noise. 

To give examples, asking a candidate to implement the game Connect Four in a terminal (a series 



of multiple steps) is probably a better question than asking a candidate to rotate a matrix (a single 

step, with some easy giveaways). And implementing k-means clustering (multiple operations that 

build on each other) is probably better than determining the largest rectangle that can fit under a 

histogram.

Avoid hard questions
If a candidate solves a really hard question well, that tells you a lot about their skill. However, 

because the question is hard, most candidates will fail to solve it well. The expected amount of 

information gained from a question, then, is heavily impacted by the difficulty of the question. We 

find that the optimal difficulty level is significantly easier than most interviewers guess.

This effect is amplified by the fact that there are two sources of signal when interviewing a 

candidate: whether they give the “correct” answer to a question, and their process / how easily 

they arrive at that answer. We’ve 

gathered data on this at Triplebyte 

(scoring questions both on whether 

the candidate reached the correct 

answer, and how much effort it 

took them, and then measuring which scores predict success at companies). What we found is a 

tradeoff. For harder questions, whether the candidate answers correctly carries most the signal. For 

easier questions, in contrast, most of the signal is found in the candidate’s process and how much 

they struggle. Considering both sources of signal, the sweet spot is toward the easier end of the 

spectrum.

The rule of thumb we now follow is that interviewers should be able to solve a problem in 25% 

of the time they expect candidates to spend. So, if I’m developing a new question for a 1-hour 

interview, I want my co-workers (with no warning) to be able to answer the question in 15 minutes. 

Paired with the fact that we use multi-part real-world problems, this means that the optimal 

interview question is really pretty straightforward and easy.

To be clear, I am not arguing for lowering the bar in terms of pass rate. I am arguing to ask easy 

questions, and then including in your evaluation how easily the candidate answered the questions. 

I’m arguing for asking easy questions, but then judging fairly harshly. This is what we find optimizes 

We find that the optimal difficulty 
level is significantly easier than most 
interviewers guess.



signal. It has the additional benefit of being lower stress for most applicants.

To give examples, asking a candidate to create a simple command line interface with commands 

to store and retrieve key-value pairs (and adding functionality if they do well) is probably a better 

problem than asking a candidate to implement a parser for arithmetic expressions. And a question 

involving the most common data structures (lists, hashes, maybe trees) is probably better than a 

question about skiplists, treaps or other more obscure data structures.

Ask every candidate the same questions
Interviews are about comparing candidates. The goal is to 

sort candidates into those who can contribute well to the 

company and those who can’t (and in the case of hiring for 

a single position, select the best person who applies). Given 

this, there is no justification for asking different questions to 

different candidates. If you evaluate different candidates for 

the same job in different ways, you are introducing noise.

The reason it continues to be common to select questions 

in an ad-hoc fashion, I think, is because it’s what 

interviewers prefer. The engineers at tech companies 

typically don’t like interviewing. It’s something they do 

sporadically, and it takes them away from their primary 

focus. In order to standardize the questions asked to every 

candidate, the interviewers would need to take more time 

to learn the questions and talk about scoring and delivery. 

And they would need to re-do this every time the question 

changed. Also, always asking the same question is just a little more tedious.

Unfortunately, the only answer here is for the interviewers to put in the effort. Consistency is 

key to running good interviews, and that means asking every candidate the same questions, and 

standardizing delivery. There’s simply no alternative.



Consider running multiple tracks
In conflict with my previous point, consider offering several completely different versions of your 

interview. The first step when designing an interview is to think about what skills matter. However, 

some of the answers might be in conflict! It’s pretty normal, for example, to want some really mathy 

engineers, and some very productive / iterative engineers (maybe even for the same role). In this 

case, consider offering multiple versions of the interview. The key point is that you need to be at 

enough scale that you can fully standardize each of the tracks. This is what we do at Triplebyte. 

What we’ve found is that you can simply ask each candidate which type of interview they’d prefer.

Don’t let yourself be biased by credentials
Credentials are not meaningless. Engineers who have graduated from MIT or Stanford, or worked 

at Google and Apple really are better, as a group, than engineers who did not. The problem is 

that the vast majority of engineers (myself included) have done neither of these things. So if a 

company relies on these signals too heavily, they will miss the majority of skilled applicants. Giving 

credentials some weight in a screening step is not totally irrational. We don’t do this at Triplebyte 

(we do all of our evaluation 100% background blind). But giving some weight to credentials when 

screening might make sense.

Letting credentials sway final 

interview decision, however, does 

not make sense. And we have data 

showing that this happens. For a given level of performance on our background-blind process, 

candidates with a degree from a top school go on to pass their interviews at companies at a 30% 

higher rate than candidates without the name-brand resume. If interviewers know that candidate 

has a degree from MIT, they are more willing to forgive rough spots in the interview.

This is noise, and you should avoid it. The most obvious way is just to strip school and company 

names from resumes before giving them to your interviewers. Some candidates may mention their 

school or company, but we do all our interviews without knowing the candidates’ backgrounds, and 

it’s actually pretty rare for a candidate to bring it up during technical evaluation.

Avoid hazing
One of the ugliest ways interviews can fail is that they can take on an aspect of hazing. They’re not 

There are so many different ways to 
be a skilled engineer, that almost no 
candidates can master them all.



just about evaluating the skill of a candidate, they’re also about a 

group or team admitting a member. In that second capacity, they 

can become a rite of passage. Yes, the interview is stressful and 

horrible, but we all did it so so should the candidates. This can be 

accentuated when a candidate is doing badly. As an interviewer, 

it can be frustrating to watch a candidate beat their head against 

a problem, when the answer seems so obvious! You can get short 

tempered and frustrated. This, of course, only increases the stress 

for the applicant in a downward spiral.

This is something you want to stay a mile away from. The solution 

is talking about the issue and training the interviewers. One trick 

that we use is, when a candidate is doing really poorly, to switch 

from evaluation mode, where the goal is to judge the candidate, 

to teaching mode, where the goal is to make the candidate 

understand the answer to the question. Mentally making the 

switch can help a lot. When you’re in teaching mode, there is no reason to withhold information or 

be anything other than friendly.

Make decisions based on max skill, not average or min skill
So far, I’ve only talked about individual questions, not the final interview decision. My advice here is 

to try to base the decision on the maximum level of skill that the candidate shows (across the skill 

areas you care about), not the average level or minimum level.

This is likely what you are already doing, intentionally or not! The way hire/no hire decisions are 

made is that everyone who interviewed a candidate gets together in a meeting, and an offer is 

made if at least one person is strongly in favor of hiring, and no one is strongly against. To get 

one interviewer to be strongly in favor, what a candidate needs to do is ace one section of the 

interview. Across our data, max skill is the attribute that’s most correlated with acing at least one 

section of a company’s interview. However, to be made an offer, a candidate also needs no one to 

be a strong no against them. Strong noes come when a candidate looks really stupid on a question.

Here we find just a great deal of noise. There are so many different ways to be a skilled engineer, 



A final question I should answer is why do interviews at all? I’m sure some readers have been 

gritting their teeth, and saying “why think so much about a broken system? Just use take-home 

projects! Or just use trial employment!” After all, some very successful companies use trial 

employment (where a candidate joins the team for a week), or totally replace in-person interviews 

with take-home projects. Trial employment makes a lot of sense. Spending a week working beside 

an engineer (or seeing how they complete a substantial project) almost certainly provides a better 

measure of their abilities than watching them solve interview problems for 1 hour. However, there 

are two problems that keep trial employment from replacing standard interviews:

Trial employment is expensive for the company. No company can spend a full week with every person 
who applies. To decide who makes it to the trial, companies must use some other interview process.

Trial employment (and large take-home projects) are expensive for the candidate. Even when they are 

Why do interviews at all?

that almost no candidates can master them all. This means if you ask the right (or wrong) question, 

any engineer can look stupid. Candidates get offers, then, when at least one interview lines up with 

an area of strength (max skill) and no areas line up with a significant weakness. The problem is that 

this is noisy. The same engineer who fails one interview because they looked stupid on a question 

about networking passes other interviews with flying colors because that topic did not come up.

The best solution, I think, is for companies to focus on max skill, and be a little more comfortable 

making offers to people who looked bad on parts of the interview. This is, looking for strong 

reasons to say yes, and not worrying 

so much about technical areas where 

the candidate was weak. I don’t want 

to be absolute about this. There are of 

course technical areas that just matter 

to a company. And deciding that you want to have a culture where everyone on the team is at a 

certain level in a certain area may well make sense. But focusing more on max skill does reduce 

interview noise.

There are so many different ways to 
be a skilled engineer, that almost no 
candidates can master them all.



paid, not all candidates have the time. An engineer working 
a full-time job, for example, may simply not be able to take 
the time off. And even if they can, many won’t. If an engineer 
already has job offers in hand, they are less likely be willing 
to take on the uncertainty of a work trial. We see this clearly 
among Triplebyte candidates. Many of the best candidates 
(with other offers in hand) will simply not do large projects or 

work trials.

The result of this is that trial employment is an excellent 

option to offer some candidates. I think if you have the scale 

to support multiple tracks, adding a trial employment track is 

a great idea. However, it’s not viable as a total replacement 

for interviews.

Talking to candidates about past experience is also 

sometimes put forward as a replacement for technical 

interviews. To see if a candidate can do good work in the 

future, the logic goes, just see what they’ve done in the past. We’ve tested this at Triplebyte, and 

unfortunately we’ve not had great results. Communication ability (ability to sell yourself) ended up 

being a stronger signal than technical ability. It’s just too common to find well-spoken people who 

exaggerate their role (take credit for a team’s work), and modest people who downplay what they 

did. Given enough time and enough questioning, it should be possible to get to the bottom of this. 

However, we found that within the time limits of a regular interview, talking about past experience 

is not a general replacement for interviewing. It is a great way to break the ice with a candidate and 

get a sense of their interests (and judge communication ability and perhaps culture fit). But it’s not 

a viable total replacement for interviews.

I want to end this post on a more positive note. For everything that’s wrong with interviews, there 

is a lot that’s right about them.

Good things about programming interviews!



Interviewing is hard. Human beings are hopelessly complex. On some level, judging human ability 

in a 4-hour interview is just a fool’s errand. I think it’s important to stay humble about this. Any 

interview process is bound to fail a lot of the time. People are just too complex.

But that’s not an argument for giving up. Trying to run a meritocratic process is better than not 

trying. At Triplebyte, our interview is our product. We brainstorm ideas, we test them, and we 

improve over time. This, I think, is the approach that’s needed to improve how engineers are hired.

Conclusion

Interviews are direct skill assessment. I have friends who are teachers, who tell me that teacher 

interviews are basically a measure of communication ability (ability to sell yourself), and a credential. 

This seems to be true of many many professions. Silicon Valley is not a perfect meritocracy. But 

we do at least try to directly measure the skills that matter, and stay open to the idea anyone with 

those skills, regardless of background, can be a great engineer. Credential bias often stands in the 

way of this. But we’ve been able to mostly overcome this at Triplebyte, and help a lot of people 

with unconventional backgrounds get great tech jobs. I don’t think Triplebyte would be possible, for 

example, in the legal field. The reliance on credentials is just too high.

Programmers also choose 

interviews. While this is a very 

controversial topic (there are 

certainly programmers who feel 

differently), when we’ve run experiments offering different types of evaluation, we find that most 

programmers still pick a regular interview. And we find that only a minority of programmers are 

interested in companies that use trial employment or take-home projects. For better or worse, 

programming interviews seem to be here to say. Other types of evaluation are great supplements, 

but they seem unlikely to replace interviews as the primary way engineers are evaluated. To 

misquote Churchill, “Interviews are the worst way to evaluate engineers, except for all the other 

ways that have been tried from time to time.”

Ammon Bartram, CEO & Co-Founder of Triplebyte
Author Info

We do at least try to directly measure 
the skills that matter, and stay open 
to the anyone with those skills



[1] I’m limiting this to technical skill assessment. I’ll be writing a future post about culture fit, behavioral interviews and non-technical evaluation.

[2] There is of course variation here. At opposite ends of the spectrum we see companies that require a unanimous yes from every interviewer to 
make a hire, and companies where the hiring manager is solely responsible for the decision.

[3] These numbers are what companies report about their internal candidates. And the numbers vary widely between companies (they report 
fire rates, for example, as low as 1% and as high as 30%). The numbers are significantly better for Triplebyte candidates. So far, our candidates at 
companies have received offers after 53% of interviews, and 2% have been fired.



Triplebyte enables companies hiring technical talent to source highly-skilled candidates from 

diverse backgrounds, streamline hiring processes and ultimately reduce 

time-to-hire. 

We provide a marketplace of technically pre-screened engineers evaluated through a background-

blind process that we match to companies based on their specific hiring requirements. The result 

is more, better qualified candidates that companies can review, evaluate and progress, without 

the need to spend valuable time on pre-screening.

Request your free demo today: hire.triplebyte.com/demo-request

Triplebyte is rewriting the code for technical hiring.

Access an elite pool of diverse talent 
that you won’t find anywhere else.

1 1
2 2

Cut %me to 
hire in half

40% 40%

Drive an onsite-to-
hire rate to 40%

Hire the top 3% 
of engineers

3% 3%

http://hire.triplebyte.com/demo-request
http://hire.triplebyte.com/demo-request


Triplebyte.com

http://Triplebyte.com

