DZone. < spli

A DEVADA MEDIA PROPERTY

VEry e

- Introduction

Progressive Del
Patterns and P

- Benefits of Progressive Delivery

° - Common Patterns
n t | - a tte rn S - Implementing the Feature

Delivery Pattern

- Final Thoughts

Faster, Safter, Data-Driven Releases

DAVE KAROW
CONTINUOUS DELIVERY EVANGELIST AT SPLIT

Best practices for developing, building, deploying, and operating solution at a time and to use mocks or virtual services so that each
software have evolved significantly over the last two decades. commit could be checked in on its own, and yet, they could still be
Software delivery cycles no longer take 18 months, or even six tested and validated if other bits weren’t ready.

months; it’s now just a matter of weeks, days, or even hours. Two CONTINUOUS DELIVERY

of the biggest developments were the adoption of continuous
. . . . Then along came continuous delivery, the “radical” idea that
integration and continuous delivery (CI/CD).

deployments shouldn’t be labor-intensive, high-drama, multi-hour

THE RISE OF Cl/CD events that must happen outside of normal business hours.

CONTINUOUS INTEGRATION In an interview with Jez Humble, co-author of the book on

The original idea behind continuous integration was to find problems continuous delivery, Continuous Delivery: Reliable Software Releases

faster, and to get away from postponing problem discovery, merging Through Build, Test, and Deployment Automation, Humble said:

issues, and identifying bugs until late in the process when they are))) .
“We just didn’t want to spend our weekends in data centers doing

harder to resolve. As Martin Fowler once said:

releases anymore. We thought it was a shitty way to spend our time
“Continuous integration doesn’t get rid of bugs, but it does make them and it was miserable for everyone. We actually want to enjoy our

dramatically easier to find and remove.” weekends. It was really about making releases reliable and boring.”

Continuous integration required three things:

Rest easy with safer releases.
Signup to try our free Feature Flag Edition.

1. A centralized source code repository.

2. Tests, mostly at the unit-test and integration-test level, that

could be run automatically and very quickly.

3. ACl server or service to sweat the details so that you wouldn’t

have to.

The idea was to check in your code, and then what needed to happen

would just happen.
Every. Single. Time.

Cl challenged people to focus on building smaller chunks of their

https://www.thoughtworks.com/continuous-integration
https://www.split.io/blog/jez-humble-interview-decisions-2018/
https://www.amazon.com/dp/0321601912/ref=cm_sw_em_r_mt_dp_U_7rAuEb7AP058F
https://www.amazon.com/dp/0321601912/ref=cm_sw_em_r_mt_dp_U_7rAuEb7AP058F
https://www.split.io/signup/
https://www.split.io/signup/

Skip the hotfixes and rollbacks
with Split's Feature Delivery Platform.

O
i

-1

1

|

i

:

4
)

‘\]
L o

S)
|

%*

Manage Monitor Experiment
feature flags release errors with A/B tests

Confidently release features as fast as you develop them.
Keeping your customers (and engineering teams) happy.

Try it for free at Split.io/signup

< split

https://www.split.io/signup/

@ DZone.

A DEVADA MEDIA PROPERTY

“[Continuous Delivery] reduces the ongoing cost of evolving your flags to gradually expose functionality to particular users. Sam called

software because what you’re fundamentally doing is reducing the that practice “progressive experimentation”:

transaction cost of pushing changes. So, you can put changes out
“Well, when we’re rolling out services, what we do is progressive

more often, at a lower cost.”

experimentation because what really matters is the blast radius. How
Continuous delivery sought to lower the cost (in time and talent) of many people will be affected when we roll that service out and what
delivering change. This goal of frequency and low drama required can we learn from them?”

better ways to limit risk and observe the business impact.
Before we consider several strategies for implementing progressive

If you can do releases often with less effort, then it’s much easier to delivery, let’s take a deeper look at the benefits each provide. In other
achieve a fast feedback loop, which is the fundamental objective words, what goals are met by implementing progressive delivery?
we’re aiming for in the first place:
BENEFITS OF PROGRESSIVE DELIVERY
| want to... REDUCE DOWNTIME

We used to accept planned outages for “system upgrades” as mildly
annoying but normal. Not anymore. No one enjoys logging onto a
website to see a message declaring that the system is temporarily
down for maintenance, or to launch a mobile app and find it

mysteriously unresponsive.

For services that are consumed by other services (such as credit card
processing, shopping cart providers, and authentication providers),
planned downtime isn’t just annoying, it’s simply unacceptable. This
is the first goal of progressive delivery — to get away from bringing

down an entire service just to install a new release.

LIMIT THE BLAST RADIUS OF UNINTENDED CONSEQUENCES

WHAT IS PROGRESSIVE DELIVERY? No matter how much planning, testing, and simulation is put into
This Refcard will dive into greater detail on what progressive delivery arelease, it’s likely that something will eventually go wrong. When
is, why it’s being adopted, and how you can get started. Let’s begin it does, we want to limit the blast radius (the extent of the impact),
with this brief definition by Carlos Sanchez, Sr. Cloud Software both in terms of scope (the number of users impacted) and duration.

Engineer at Adobe:
FACILITATE HIGH CADENCE (FLOW)

“Progressive delivery is the next step after continuous delivery, where Years of research by DevOps Research Associates (DORA) have proven
new versions are deployed to a subset of users and are evaluated that higher cadence delivery, or “flow” as some like to call it, is
in terms of correctness and performance before rolling them to the closely related to lean manufacturing concepts like limiting work in
totality of the users and rolled back if not matching some key metrics.” progress (WIP), small batch sizes, loosely coupled architecture, and

empowering individual teams.
PROGRESSIVE DELIVERY
. . In his latest book, The Unicorn Project, Gene Kim advances the ideal
Progressive delivery emerged as a natural response to concerns
raised by the idea of “continuous” anything; if teams were going to of “locality and simplicity,” which best sums up these ideas:
move faster and release mare often, then the surface area for things “If a team needs to schedule a deployment and it requires 40 to 50 other

going wrong would likely be bigger. How could that be managed? teams to work with them into the schedule, nothing will ever get done.”

And better still, how could risk be reduced while simultaneously
increasing the value of moving fast? With that in mind, think about this goal of progressive delivery as

improving the ability for smaller, independent deliverables to make

The actual term was born out of a conversation between Sam it to production and to remain as isolated as possible from the

Guckenheimer, head of product for Azure DevOps, and James progress and/or stability of other teams’ work.

(3] S split

Governor, Redmonk analyst. Sam was describing Azure DevOps’

staged deployments around the world and how they used feature

https://www.split.io/signup/
https://blog.csanchez.org/2019/01/22/progressive-delivery-in-kubernetes-blue-green-and-canary-deployments/
https://www.infoq.com/presentations/progressive-delivery/
https://www.amazon.com/dp/1942788762/ref=cm_sw_em_r_mt_dp_U_cwAuEbFB0EWQE?pldnSite=1

‘ DZone.
A DEVADA MEDIA PROPERTY

LEARN FASTER

As we saw above, Sam Guckenheimer used the term “progressive
experimentation” and focused on two key goals. The first (the one
most people think of) was limiting the blast radius, and the second
one (less often thought about) was to learn as much as possible from

users exposed to a new release.

Learn faster is seldom “built-in” to tooling by those just starting out
on the progressive delivery journey. Instead, ad-hoc “checking to see
if everything’s OK,” i.e. nothing is burning the system to the ground,

often suffices, and subtle changes are missed altogether.

If the learning component of your implementation is left to manual
work done by highly skilled (and scarce!) data scientists, you can
bet it won’t be performed every time you release. To make matters
worse, a gradual release can make it more difficult to see changes in
KPI’s because there is no sudden fluctuation as there would be in a

big-bang, all-or-nothing release.

Learn faster is about discovering the real-world, in-production
impact of a release on system health and business KPIs before
calling the release “done” and rolling it out to users. Automating
this capability is a bit like moving from manual runbooks to

SRE-built automation.

COMMON PATTERNS

Now that we have a better understanding of where progressive
delivery came from and the goals it helps achieve, let’s move on to
four common patterns for implementation and see how each helps

us meet one or more of those goals.

BLUE-GREEN DEPLOYMENTS
PATTERN

With blue-green deployments, you have your production running on
the “blue” infrastructure, and then you stand up “green,” which is a
copy of your production infrastructure. You take your time installing
the new release on green, do your smoke tests, and make sure

everything is good to go.

Green infrastructure:

Blue infrastructure:

ver x.2

Load
Balancer

When you believe you’re ready, it’s time to make a clean cut over

from blue to green, routing your production traffic there.

If you missed something in testing that shows up when you go to

green, reverting is really easy: just switch back to blue.

If things go well, you stay on green. Then, you recycle the blue

environment to become the next staging area. That’s blue-green.

Green infrastructure:

Blue infrastructure:

Pres lease

Balancer

GOALS MET
Avoid Downtime

Blue-green is great at avoiding downtime because you can take as
long as you want for preparation, and then you can instantly cut

traffic over when you are ready.
Limit the Blast Radius (Half Credit)

For limiting the blast radius, blue-green gets half credit, and that’s for
the duration of issues. Since blue is still up and unchanged before the
release, you can switch right back to it in minutes if you have to. In
terms of scope, it gets no credit. You may have shown all your users

something horrible for a few minutes or been entirely down.
Achieve Flow (No Credit)

Blue-green doesn’t advance the goal of flow because it's still an
all-or-nothing, “big-bang” release of all payloads in the deployment.
Everything either goes live all at once or gets turned off to await

the next deployment. In other words, the “working” portions of a

deployment get shut off along with the broken bits.
Learn During the Process (No Credit)

There's nothing inherent to blue-green that helps you learn. It
doesn’t help you focus on each of the things you just changed in this
release. How are they impacting system health or user behavior? It’s
hard to tell because you've got one big release that you've exposed

all users to at once.

< split

https://www.split.io/signup/

@ DZone.

A DEVADA MEDIA PROPERTY

Benefits Blue/Green
Deployment

Avoid Downtime

Limit the Blast Radius

Limit WIP / Achieve Flow

Learn During Process

e
D
O
O

CANARY RELEASES
PATTERN

In a canary release, your infrastructure is already up and running.

Production Release

ver x.1

Load
Balancer

Let’s say there are 100 servers and you want to try out your
new release on just two of the servers, sending 2% of your

population there.

You will need to create logic somewhere to figure out how to route
those users, and you’ll need to decide whether the user routing

decision needs to be sticky (it probably does).

Production Release
ver x.1

Load
Balancer

You build a replica of production, install changes on it, and run

smoke tests. Next, you route part of your real traffic to these canaries

and pay close attention to system health (error rates, response times,

CPU/memory stats, etc.).

If production traffic succeeds on your canary, you expand it to
replace production. If anything goes wrong, you just drain the traffic

from the canary and route back to production.

GOALS MET
Avoid Downtime (Full Credit)

Canary is great for avoiding downtime. As with blue-green, you can
set up your new release on your own time and only direct traffic to it

after you are sure everything is ready and checked out.
Limit the Blast Radius (Full Credit)

Canary does a great job of limiting the blast radius in terms of both
duration and scope. You can limit the duration by simply updating
routing away from the canaries and letting the current canary traffic
drain off. Since you are only going out to 1% or 2% at the beginning,

you are also doing a great job limiting the scope.
Achieving Flow (No Credit)

Canary doesn’t really do a great job helping with flow because as
with blue-green, we are exposing all of the release payloads in the
deployment as a single whole. If one of those payloads has an issue,

we “kill” the entire canary and start over.
Learn During the Process (Vs Credit)

Canary gets a quarter credit here because if you are going out to
just two servers, you can pay a lot of attention to those two servers
and you are probably going to see obvious things like CPU, network

traffic, etc. That's a big red flag.

The % credit that Canary doesn’t get for this goal is due to the fact
that if you have multiple changes in that deployment, you still
don't know which one (or more) is causing problems or leading to

undesirable changes in user behavior. Bottom line? We may know

“something is not right” but the feature that is causing the problem

doesn’t shout, “Hey, it's me!”

Canary e

Avoid Downtime

Limit the Blast Radius

Limit WIP / Achieve Flow

Learn During Process

O ®®

FEATURE FLAG ROLLOUTS

This was a big leap in the evolution of the idea of progressive delivery.
It’s no coincidence that the term emerged after many teams started
using feature flags to roll out features gradually, essentially doing a
canary release at the feature level. Another important difference we’ll

see below is that you can use user attributes to decide who should

< split

get new features first.

https://www.split.io/signup/

@ DZone.
A DEVADA MEDIA PROPERTY

PATTERN

With feature flag rollout, you deploy the code with the new features
turned off. Once the code with flags is in place, you can turn it on and

off whenever you want, for as many users or as few as you want.

To begin your rollout, you might first expose the code just to the dev
team for a final smoke test on production. Next, you might dogfood,
exposing the new features to your employees only (again, this is

on production).

w_ ®o0 e e e
' ¥ ¥ ¥ ¥
w_| ©®® @O O
' ¥ Y YaAYa
w_ ® @000
Y YaYaye
o — ® O 0 0O O
" YAV VA VA
6l D60 0D
ALY S o A A Y i
.

If things are still going well, you start to ratchet up the rollout into
your actual user population. This gives you the chance to expose new
features to 5%, 10%, 20% of your users in steps as you go, and to be

able to see how it’s going before ramping higher.

Reverting your release is quite simple: You just ratchet back the
feature flag setting. If you had it out to 10% of your real users and you
find some unexpected issues, you might go back to just dogfooding
or even back to just the dev team. More importantly, you don’t need
to patch, re-deploy, or even change network routing rules. You are
still deployed to production, but you’re not exposing the new code to

your customers.

GOALS MET
Avoid Downtime (Full Credit)

Feature flag rollouts avoid downtime because there is no
deployment needed to turn them on or off. To get the code in place
with the flags turned off, you might still use blue-green or canary.

Limit the Blast Radius (Full Credit)

Feature flag rollouts check the box really well here in terms of both
duration and scope. Duration is very short because it does not take a
deployment or a hotfix to undo a feature flag rollout. You just send a
different signal to the system. In terms of scope, the typical pattern is
to roll to non-customers and then very few customers at the start, so

the chances of a broad-scoped impact are very small.

Some in-house feature flagging solutions only support simple on/
off toggles and thus are not capable of percentage-based rollouts.
In that case, the behavior is more like blue/green and the ability to
limit the blast radius applies to duration only (half-credit). In terms
of scope, those systems get no credit. You may have shown all your

users something horrible for a few minutes or been entirely down.
Achieving Flow (Full Credit)

Feature flag rollouts really shine here. Since each feature has its own
flag, each one is independent. You may have dependencies you want
to enforce, but no team has their deliverable stuck on a release train
with 15 other pieces of payload. Barring any dependencies, if one
feature in the deployment has issues in production, it can be ramped
back to developers only while the other features can continue to

ramp up.
Learn During the Process (No Credit)

Feature flags, by themselves, don’t really help here. There's nothing
inherent to using feature flags that let you know which feature

is causing which problem. If you take 10 features live in a release

and you're ramping them up and things start to go wrong, you still
don't know which one is causing it without running an incident and
doing triage work. Observation of these rollouts is challenging with
traditional tools because unlike canary, small populations running
the new code are mixed in with larger populations running the status

quo on the same infrastructure.

Feature Flag Rollout

Avoid Downtime

Limit the Blast Radius

Limit WIP / Achieve Flow

000 e

Learn During Process

FEATURE DELIVERY PLATFORMS
PATTERN

Feature delivery platforms marry the gradual release capabilities

of feature flag rollouts with the automated ingest and statistical
computation of KPI differences between the status quo and new
code. Simply put, feature delivery platforms provide both a control
mechanism to determine “who gets what” and a “sensemaking”
mechanism to answer the question: “Did we accomplish what we set

out to do without making something worse in the process?”

< split

https://www.split.io/signup/

@ DZone.
A DEVADA MEDIA PROPERTY

Contrast this with the feature flag rollout pattern where the
“sensemaking” (if done) is performed separately by ad-hoc query

or exploratory log analysis. When the stakes are high, that often

means a war-room full of highly skilled experts standing “on alert” to

determine if everything is going as planned, and if not, to figure out

where the issue(s) are.
Key Success Criteria

To be successful, feature delivery platforms must have control

and sensemaking mechanisms that are automatic, proven, and
repeatable. In the most mature implementations, these capabilities
are used for every single release payload as the standard operating
procedure. This is a proactive rather than reactive approach. It’s
also vastly more scalable because it allows experts to focus on novel

problems, not watching every release payload as it goes live.
Guardrail Metrics

Mature feature delivery platform implementations also have a key

capability known as guardrail metrics or “do-no-harm” metrics.

In the physical world, a guardrail provides “feedback” if your car gets
off course. Your car will bang into it and may get a minor scrape, but

you won’t fall off a cliff.

Guardrail metrics do the same thing for us in fast-moving continuous
delivery environments. The idea is to automatically calculate “do-
no-harm” metrics without asking individual development teams to
perform extra work. This allows teams to focus on their objectives
but still learn whether they are negatively impacting the business

before rolling out to 100% of users.

Imagine that your development team is working to drive users to
create more “tasks” in their solution. Initial results are quite good,
with an 11.2% increase in task creation. Here, the guardrail metric
might be average initial page load time, alerting the team that they
have unintentionally increased response time by 25.64%. Without
automatic calculation of guardrail metrics, this impact might have
been missed, and the new code could have been rolled out to all

users, leading to churn of users due to unacceptable latency.
GOALS MET

The first three goals (Avoid Downtime, Limit the Blast Radius, and
Achieving Flow) are all met with the same “full credit” score earned
by feature flag rollouts because the feature delivery platform pattern

is a superset of the feature flag pattern.
Learn During the Process (Full Credit)

Learning during the process is where feature delivery platforms
differentiate themselves from all of the other patterns we’ve covered

so far. The difference is the built-in feedback loop at the individual

feature level, allowing easy side-by-side comparison of populations
running the new code and running the status quo. This increases the

value of each build-measure-learn iteration your teams perform.

Consider again a deployment containing 10-15 separate release
payloads (i.e. features or bundles of new/changed code). Unlike blue-
green, canary, or feature flag rollouts, each payload is continually
evaluated to determine if it is accomplishing its goal or doing harm.
When issues arise, instead of running manual triage to look for a
needle in the haystack, the needle “phones home” shouting out: “It’s

1”

me! I’'m the one hurting users!

These platforms amplify the impact of engineering and operations
resources by separating signals from noise so teams can focus on

lessons learned, not manual observation and triage.
EXAMPLES IN THE WILD

To learn more about early pioneers that built these platforms to
improve their outcomes, look into Microsoft’s internal platform, EXP,

and the in-house systems at LinkedIn, booking.com, and Wal-Mart.

Benefits Feature Delivery
Platform
Avoid Downtime .
Limit the Blast Radius .
LimitWIP / Achieve Flow .
Learn During Process .

IMPLEMENTING THE FEATURE
DELIVERY PATTERN

Use the checklists below to establish or extend the feature delivery
platform pattern in your own environment. It is essential these
capabilities be accessible to any member of your team. This should
not require re-inventing the wheel by separate teams or ad-hoc

investigation by a subject matter expert or “on-call” resource.
FOUNDATIONAL CAPABILITIES CHECKLIST
DECOUPLE DEPLOY FROM RELEASE

Create a consistent, organization-wide mechanism for controlling

exposure of new code:
O Allow changes of exposure without new deploy or rollback

O Support targeting by UserlID, attribute (population),

random hash
< split

https://www.split.io/signup/
https://exp-platform.com/
https://engineering.linkedin.com/ab-testing/xlnt-platform-driving-ab-testing-linkedin
https://medium.com/booking-com-development/moving-fast-breaking-things-and-fixing-them-as-quickly-as-possible-a6c16c5a1185
https://medium.com/walmartlabs/the-journey-of-a-b-testing-at-walmartlabs-3b9bba8e558f

DZone.

AUTOMATE REPORTING OF RELEASE EXPOSURE

Automate a reliable and consistent way to answer, “Who have we

exposed this to so far?”
O Record who hit a flag, which way they were sent, and why
O Confirm that targeting is working as intended
O Confirm that expected traffic levels are reached

AUTOMATE REPORTING OF RELEASE IMPACT ON SYSTEM HEALTH &
USER BEHAVIOR

Automate a reliable and consistent way to answer the question, “Did
we accomplish what we set out to do, without making something

worse in the process?”

O Compare system health (errors, latency, etc.) between

populations exposed to new code and status quo.

O Compare user behavior (business outcomes) between

populations exposed to new code and status quo.

O Automatically compute comparisons of “guardrail metrics”
between populations exposed to new code and status quo

to avoid the local optimization trap

THE TWO PRIMARY USE CASES

The three essential capabilities can be applied to address these two

key use cases:
RELEASE FASTER WITH LESS RISK

Limit the blast radius of unexpected consequences so you can
replace the “big-bang” release night with more frequent, less

stressful rollouts.

O Ramp in stages, starting with dev team, then dogfooding,

then % of public

O Monitor at feature rollout level, not just globally (vivid facts

vs. faint signals)
O Alert at the team level (build it/own it)

O Kill if severe degradation detected (stop the pain now,

triage later)

O Continue to ramp up healthy features while “sick” are

ramped down or killed

DZone, a Devada Media Property, is the resource software
developers, engineers, and architects turn to time and again
to learn new skills, solve software development problems,
and share their expertise. Every day, hundreds of tousands

ENGINEER FOR IMPACT (NOT OUTPUT)

Focus precious engineering cycles on “what works” with
experimentation, making statistically rigorous observations about

what moves KPIs (and what doesn’t).
[0 Target an experiment to a specific segment of users

O Ensure random, deterministic, persistent allocation to

A/B/n variants

O Ingest metrics chosen before the experiment starts (not

cherry-picked after)
O Compute statistical significance before proclaiming winners

O Design for diverse audiences, not just data scientists (buy-in

needed to stick)

FINAL THOUGHTS

When considering new ways of doing work, it’s useful to be clear on
the “why” before figuring out the “how.” In this Refcard, we took time
to identify the goals for progressive delivery before exploring the

available implementation patterns.

Higher cadences of delivery simultaneously increase the chance for
things to go wrong, but also the surface area for learning. Progressive
delivery patterns are a proven way to reduce the risk of unforeseen
consequences, and depending on your implementation choices, can

increase the value of each release iteration.

Written by Dave Karow,

Devada, Inc.

600 Park Offices Drive

Suite 150

Research Triangle Park, NC 27709

&L

/0

VADA MED

ne.

of developers come to DZone to read about the latest
technologies, methodologies, and best practices. That makes
DZone the ideal place for developer marketers to build product
and brand awareness and drive sales. DZone clients include
some of the most innovative technology and tech-enabled
companies in the world including Red Hat, Cloud Elements,

Sensu, and Sauce Labs.

888.678.0399 919.678.0300

Copyright © 2020 Devada, Inc. All rights reserved. No
part of this publication may be reporoduced, stored in a
retrieval system, or transmitted, in any form or by means
of electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

S splif

https://www.split.io/signup/

