
1L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Hyperdrive:
A Continuous Delivery Report

2L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Everyone wants to deliver better software without sacrificing speed or safety.

And yet, the velocity of releasing software remains a relatively subjective

experience for each organization. For instance, it’s very easy to say you’re

performing continuous delivery (CD), but what that actually looks like in practice

differs depending on the company.

To get a better feel for the state of continuous delivery and how teams are

delivering software, LaunchDarkly and Sleuth partnered with DZone to survey

software developers, architects, site reliability engineers, platform engineers, and

other IT professionals.

For the purposes of this report, we’re defining continuous delivery as the process

of releasing new code to quality assurance for testing on a rapid, continuous basis.

Our questions aimed to gain a stronger understanding of the motivations driving

the adoption of continuous delivery, metrics being tracked, use of feature flags,

and more.

Continuous
delivery is the
process of
releasing new
code to quality
assurance for
testing on a rapid,
continuous basis.

https://launchdarkly.com/
https://www.sleuth.io/
https://dzone.com/

3L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Reasons for adopting
Continuous Delivery

It’s been said that the c-suite loves continuous delivery
more than developers do.

We wanted to understand why continuous delivery is attractive to software

professionals in general, and specific job roles in particular, so we asked and

then segmented by job role.

KEY FINDING 1

4L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

The top two reasons for adopting continuous delivery (increased speed of

feature delivery; shortened development cycles) are related to velocity from a

developer’s point of view. Other goals that represent the same improvements

— but from project management/ops perspectives, e.g. increased release

frequency and reduced deployment error rate — are ranked lower overall.*

Scores are computed by weighted rank: if, for a given response, answer A is ranked highest out of N answer options, then A’s score is
incremented by N, while if answer B is ranked second highest out of N answer options then B’s score is incremented by N-1.

Reason	 Score

Increased speed of feature delivery	 1732

Shortened development cycles	 1504

Increased release frequency	 1364

Improved developer/team flow/productivity	 1195

Reduced complexity of development cycle	 1127

Reduced deployment error rate	 903

Reduced overhead costs	 897

Reduced time to complete QA feedback loops	 887

Reduced maintenance cost	 847

Reduction in number of bugs post deployment	 839

Reduced mean time to discovery (MTTD)	 632

Reduced error budget	 537

5L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

The main reasons companies implement continuous integration/continuous

delivery is for speed. But speed needs to be balanced with safety mechanisms,

as moving too quickly can lead to unintended consequences. The safety

mechanisms rank higher when examined by role.

Developers rank “reduced deployment error rate” seventh (score: 747), SREs

rank “reduced deployment error rate” sixth (score: 24) and platform engineers

rank “reduced deployment error rate” 12th and last (score: 17). These varying

rankings suggest different social stakes for CI/CD among roles.

If you’re looking to implement CI/CD in your organization, the justification to get

buy-in across the organization should vary by role.

Continuous
Integration and
Continuous
Delivery needs to
be balanced with
safety mechanisms
as moving too
quickly can lead
to unintended
consequences.

6L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

0%	 20%	 40%	 60%

Actual vs Desired Deployment Frequency

Although many factors influence optimal software release frequency—many of

which could not be reasonably smoothed by a single objective distribution—we

wanted to see if there might be an overall subjective answer to the question of

which is the best frequency.

So we asked how often are folks deploying, if that’s at a favorable rate, and how

they would measure themselves against other teams.

Compared to other development teams, I believe our deployment
process is:

Worst than average

About average

Better than average

There is a desire to shift deployment frequency “right” to more frequent

deployments. Those who are deploying multiple times per month would like

to shift towards deploying multiple times per week. And the respondents

deploying once per day want to shift to deploying multiple times per day.

Auto test gate deploy

Auto test not gate deploy

7L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

How often do you deploy?

How often would you like
to deploy?

Mutliple times per day

Mutliple times per week

Mutliple times per month

Once per day

Once per week

Once per month

Less than once per month

0%							 10%							 20%							 30%		

Over 25% of respondents want to be deploying multiple times per day. However,

this may be a case where in theory this sounds good, but in practice may be

problematic, depending on whether or not the right processes to support

this pace of deployment are in place. For instance, 13% of those who release

multiple times per day believe their current rate of deployment is too fast.

8L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

0%	 10%	 20%	 30%	 40%	 50%

How often do you deploy?

Feature flag users

Feature flag non-users

Mutliple times per day

Mutliple times per week

Mutliple times per month

Once per day

Once per week

Once per month

Less than once per month

0%	 10%	 20%	 30%	 40%		

Few software professionals think they are deploying too fast. Satisfaction with

the rate of deployment appears almost evenly split between too slow (48.3%)

and just right (46.3%).

Too slow

Just right

Too fast

9L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Among the few respondents who think that their deployments are currently too

fast, significantly more not-primarily-developers like CI/CD engineers, platform

engineers, SREs, and others think they are currently deploying too fast, while

devs think they are deploying too slow.

This suggests that, in the grand scheme of things, and in proportion to software

professionals’ good judgment, software should be delivered more rapidly—i.e.

delivery ought to be more continuous.

How often do you deploy?

Too slow

Just right

Too fast

0%	 10%	 20%	 30%	 40%	 50%

Feature flag users

Feature flag non-users

1 0L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

One reason for not releasing faster is often the fear of broken code or incidents.

In fact, 10 out of the 11 respondents who said that they are moving too fast have

a higher rate of incidents associated with deployments. Contrast this with the

respondents who said their deployment rates were just right, 47 out of 94 said

they rarely have an incident related to a deployment.

While actual causes of rollbacks and incidents are far too many and complex to

be inferred from this correlation, the data suggests that software professionals

significantly associate deployment failure with prematurity in general. This

result confirms the intuition that getting deployment rate right may be a good

way to reduce rollbacks and incidents.

Teams use Metrics to Measure Continuous Delivery

Among the top five metrics teams used to measure their continuous

delivery practice, four of them are the “Big Four” metrics popularized in

the book “Accelerate”:

1. Deployment frequency		 3. Change lead time

2. Change failure rate		 4. MTTR

10 out of 11
respondents who
said that they are
moving too fast
have a higher
rate of incidents
associated with
deployments.

https://www.amazon.com/Accelerate-Software-Performing-Technology-Organizations/dp/1942788339

1 1L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

This isn’t a surprise, as these metrics have been scientifically proven to affect

software delivery performance through research conducted by DORA over the

past six years.

Deployment frequency, in particular, is the No. 1 metric for obvious reasons.

The remaining top metric, and No. 2 overall, is production downtime during

deployment. This speaks volumes to the need to increase speed without

sacrificing safety and reliability.

Deployment
frequency, in
particular, is the
No. 1 metric for
obvious reasons. Item		 Overall Rank	 Rank Distribution

Deployment frequency		 1

Production downtime during deployment	 2

Lead time		 3

Change failure rate		 4

MTTR(mean time recovery)		 5

Regression test duration		 6

Error rate		 7

MTTD (mean time to discovery)		 8

Absolute number of bugs		 9

Error budget		 10

https://www.devops-research.com/research.html

1 2L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Tactically, when it comes to measuring success of deployments, four metrics

are top of mind among teams surveyed at almost equal measure:

1. Error rate		 3. Deployment frequency

2. Customer satisfaction		 4. Response time

One thing these metrics have in common is they should be relatively easy to

access. Customer satisfaction (CSAT) and response time metrics are likely

existing measurements teams can use right away, even if they’re only lagging

indicators of deployment success.

What metrics do you track related to your deploy?

Velocity

Customer satisfaction

Response time

Lead time for change

Mean time to recovery (MTTR)

Error rate

Deployment frequency

Change failure rate

0%	 10%	 20%	 30%	 40%	 50%

1 3L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

KEY FINDING 2

More room
for automation

As complex business logic evolves, manual testing can
clog release pipelines and is prone to errors.

And while realistic automated unit testing of well-designed software is, in

theory, reasonably straightforward, it can also be labor-intensive. Certain

kinds of automated testing—like UI, load testing, and security testing—may

require compute resources in addition to the application’s own runtime host.

1 4L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Further, when Agile/JIT-style methodologies are used, unit-level tests may

evolve over the course of development, increasing the pre-release risk of

unexpectedly failing tests, missing test scenarios, and a late-discovered need

for downstream refactoring.

We know it is essential to automate as much testing, provisioning, and

mitigation facilitation as possible in order to undiscretify delivery. But

we wanted to know how software professionals actually do gate

production deployments.

Gating of Deployment by Automated Tests

There is a distinction between deploying and releasing code. Deploying

software is a technical decision, involving testing and verifying things are

working correctly. You can test in local environments, staging environments,

and in production.

Releasing software, on the other hand, is a business decision. And software

should not be released without testing. Release means customers are

interacting with the software, and if something goes wrong there are

business implications.

Deploying software
is a technical
decision. Releasing
software is a
business decison.

1 5L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

0%	 20%	 40%	 60%	 80%		

While it’s not possible to test every scenario, some degree of unit or integration

testing is typically needed before deploying and releasing software. Given

that testing is an important discipline, it was surprising that only 63% of

respondents indicated that automated tests gate deploys.

It’s possible that the 24% who deploy code without automated tests are testing

that code in production behind feature flags or in some other capacity.

Do automated tests gate the deploys?

Yes

I don’t know

No

1 6L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Tests Run Before Deploy

Aside from automated unit tests–which are the most fundamental–the

most-commonly run tests before deployment are manual QA. Manual testing

is far from the ideal of continuous delivery. The fact that a (small) majority runs

manual QA tests before deployment suggests that, in general, the industry is

far from achieving the testing infrastructure required for CD.

What tests do you currently run before deploy?

0%	 20%	 40%	 60%	 80%		

Automated unit tests

Manual acceptance tests

Automated performance tests

Automated acceptance tests

Automated security tests

Manual unit tests

Manual QA tests

Automated linting

Manual performance tests

1 7L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Blockers to Automating Production Deployments

The top three blockers to automating production deployments are ensuring:

1.	 There is a robust code	 review process

2.	 Unit test coverage is > 75%

3.	 Pre-production and production environments are in sync

Check all things that MUST be true (i.e. join by Boolean AND) in order
to automate production deployments.

* Source

0%	 20%	 40%	 60%	 80%		

Code review process is robust.

Unit test coverage is >75%

Unit test coverage is >75%

All whitelisted user paths are covered by
automated UI tests.

There is an auditable approval process to
promote changes from pre-production to
production.

Crucial features are behind feature flags and
can be turned off without a new deployment.

Production & pre-production evironments
are provisioned by the same code.

https://reporting.alchemer.com/r/267968_607defa284cca1.05161401

1 8L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Feature flags
are in early days

One process companies implement to deploy more
frequently is feature flagging.

Feature flags are a way to control who can see a feature. With feature flags,

code can be deployed and not released to all users.

KEY FINDING 3

1 9L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Are you currently using flags to enable selective feature toggling
without redeployment (i.e. feature flags)?

While some teams are using feature flags to speed up deploys and reduce risks,

the majority (55%) of teams are not using feature flags. And for those teams

that have incorporated feature flags as part of their development processes, it

is a new addition within the last year.

Feature flags are used in many scenarios—including release management,

experimentation, and for operational purposes. The primary reasons software

professionals are using feature flags align with the two primary reasons for

implementing CD: reducing risk and increasing the rate of deployments.

The top five responses were reducing risk, speeding up feature releases,

enabling experimental feature development, lowering deployment stress

(this is a risk mitigation issue and we’ll have more on this later), and enabling

rollbacks without deploys.

0%	 20%	 40%	 60%	 80%		

Yes

No

2 0L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

0%	 20%	 40%	 60%		

	 	

Lower deployment stress

Speed up feature releases

Reduce risk

Enable experimental feature development

Enable A/B testing

Enable rollback without redeploy

Enable granular kill-switches

Limit damage in case of new feature failure
(hard canary release)

Manage customer subscription/license

levels (feature gating)

Gather preliminary real-world ussage data
for interative improvement before wide
rollout (soft canary release)

Flags make it possible for companies to move safely at speed. When something

goes wrong after a deployment, a feature can be toggled off in a short period of

time with no need to redeploy code.

What are your top reasons for using feature flags?

2 1L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

0%	 10%	 20%	 30%	 40% 	

Respondents who use feature flags are significantly more likely to

release multiple times per week or multiple times per day.

Impact of Feature Flags

Since feature flags facilitate a more aggressive release pipeline via both

feature-addition and risk-reduction, we supposed that the use of feature flags

would correlate positively with other CD maturity indicators. This turned out to

strongly be the case across a wide range of objective and subjective metrics.

How often do you deploy?

Mutliple times per day

Mutliple times per week

Mutliple times per month

Once per day

Once per week

Once per month

Less than once per month

Feature flag users

Feature flag non-users

2 2L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Respondents who use feature flags are more likely to have automated

tests gate deploys.

Respondents who use feature flags are more likely to automate

provisioning and deployment for all pre-production environments.

Do automated tests gate the deploys?

0%	 20%	 40%	 60%	 80%

Yes

No

I don’t know

We automated provisioning and deployment for

0%	 10%	 20%	 30%	 40% 	 50%

All pre-production environments

Some pre-production environments

No pre-production environments

Feature flag users

Feature flag non-users

2 3L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Respondents who use feature flags are significantly more likely to

involve all team members in deployments.

Respondents who use feature flags are less likely to require manual

steps for production deployment.

Do your deployments to production requre any manual steps?

0%	 20%	 40%	 60%	 80%

Yes

No

I don’t know

Who helps coordinate and monitor deployments for the team?

0%	 10%	 20%	 30%	 40%

Everyone

Release manager

Release manager role that shifts

We have an organization that
manages all develpment

Nobody

Feature flag users

Feature flag non-users

2 4L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Respondents who use feature flags are more likely to consider their

deployment process better than average.

Compared to other development teams, I believe our deployment
process is:

0%	 20%	 40%	 60%

Worst than average

About average

Better than average

Respondents who use feature flags are far less likely to blame team

process for organization-level deployment issues.

What do you think is causing your organization to fall behind?

0%	 20%	 40%	 60%	 80%

Dev management

Executives

Team process

Feature flag users

Feature flag non-users

2 5L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

I would describe my team’s culture as...

Lagging

Unsustainable

Chaotic Aimed at avoiding criticism

Encourages learning
Psychologoically safe

Blameless Sustainable

Dominated by engineers
Excellence orientedCraftmanship pride

Respondents who use feature flags are more likely to describe their

team’s culture as “excellence-oriented,” “craftsmanship pride,” or

“dominated by engineers,” and less likely to describe their team’s

culture as “chaotic” or “aimed at avoiding criticism.”

Feature flag users

Feature flag non-users

2 6L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

The Human Impact
Anybody that has been involved in software releases
knows that deployments cause stress and anxiety.

The worry over whether things will go smoothly or if people will be pulled

away from dinner, sleep, or vacations is real.

KEY FINDING 4

2 7L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

When something goes wrong, people are impacted, whether it is the ops engineer

who received the alert, the developer that needs to write code, the customer

support team that fields emails or calls from upset customers, or the social media

team that has to provide messaging. Software deployments impact humans, and

we wanted to look at the extent of this impact.

For example, does CI/CD improve not only the software delivery process but also

the lives of the people delivering and supporting the software?

Prevalence of Deployment Anxiety

All deployments are potentially stressful, but not all deployments cause anxiety.

Stress is a change that causes physical, emotional, or psychological strain. Anxiety

is a feeling of worry or unease about an imminent event, or something with an

uncertain outcome. You can experience stress without experiencing anxiety.

Experiencing too much stress is not good and can eventually lead to anxiety or

other physical or mental health issues that will seriously impact performance at

work and beyond.

All deployments
are potentially
stressful, but not
all deployments
cause anxiety.

2 8L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Do you experience deployment anxiety?

0%	 20%	 40%	 60%

Yes

Sometimes

Never

When we are talking about anxiety here, we do not mean in the clinical

sense defined by the “Diagnostic and Statistical Manual of Mental

Disorders” published by the American Psychiatric Association (e.g.

Generalized Anxiety Disorder). Anxiety disorders are a serious subject

and should be treated by a mental health professional. In this case, we

are referring to anxiety as an emotional response that is not necessarily

related to an anxiety disorder.

Correlates of Deployment Anxiety

Since many of our findings on correlates of deployment anxiety are clear and

actionable. Results can be listed especially concisely, with limited speculation

on causal mechanisms. Results were striking enough that we plan additional

analysis in future publications.

2 9L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Deployment frequency strongly inversely correlates with

deployment anxiety.

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

How often do you deploy?

0%	 10%	 20%	 30%	 40%

Less than once per month

Once per month

Multiple times per month

Once per week

Multiple times per week

Once per day

Multiple times per day

3 0L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Manual deployment steps required for production deploy correlate

positively with deployment anxiety.

Do your deployments production require any manual steps?

0%	 20%	 40%	 60%	 80%	 100%

Yes

No

I don’t know

Are you currently using flags to enable selective feature toggling
without redeployment (i.e. feature flags)?

0%	 10%	 20%	 30%	 40%	 50%

Yes

No

Use of feature flags mildly correlates inversely with deployment anxiety.

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

3 1L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

0%	 20%	 40%	 60%	 80%

100% unit test coverage correlates with higher deployment anxiety.

Check ALL things that must be true (i.e. join by Boolean AND) in order
to automate production deployments.

Unit test coverage is 100%

Unity test coverage is >75%

Unity test coverage is >50%

Code review process is robust

All whitelisted user paths are covered by
automated UI tests

“Most” (a fuzzy definition) user paths are
covered by automated UI tests

Realistic load tests are performed on
every build

Production & pre-production environments
are provisioned by the same code

Crucial features are called behind
feature and can be turned off without
a new deployment

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

3 2L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Manual QA and acceptance tests positively correlate, and automated

unit and acceptance tests inversely correlate, with deployment anxiety.

What tests do you currently run before deploy?

0%	 25%	 50%	 75%	 100%

Manual QA test

Manual unit tests

Manual acceptance tests

Manual performance tests

Automated linting

Automated unit tests

Automated acceptance tests

Automated security tests

Automated performance tests

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

3 3L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Observation

This finding is consistent with our earlier finding on prerequisites for

production deploy, but the present finding is stronger insofar as this question

quantifies over environments along the release pipeline.

We’ve automated provisioning and deployment

0%	 20%	 40%	 60%

For all pre-production environments

For some pre-production environments

For no pre-production environments

Automated provisioning and deployment prevalence across

environments inversely correlates with deployment anxiety.

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

3 4L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

How far apart (how much drift) do your different environments get on a
regular basis?

0%	 20%	 40%	 60%

Hardly at all, no significance
annoyance

Far enough to cause occasional,
mild annoyance

Far enough to make every
deployment nerve-wrecking

Far enough to cause frequent,
serious annoyance

Far enough to make every
deployment predictably a nightmare

Environment drift strongly correlates with deployment anxiety.

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

3 5L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Many social dysfunctions correlate positively with deployment anxiety.

Never experience
deployment anxiety

Sometimes experience
deployment anxiety

Always experience
deployment anxiety

I would describe my team’s culture as (check all that apply)

0%	 20%	 40%	 60%	 80%

Psychologically safe

Blameless

Encourages learning

Chaotic

Lagging

Aimed at avoiding criticism

Craftmanship pride

Lackadaisical

Excellence-oriented

Profit-oriented

Dominiated by engineers

Dominiated by non-engineers

Sustainable

Unsustainable

Engineering over hacking

Hacking over engineering

3 6L A U N C H D A R K LY | S L E U T H H Y P E R D R I V E : A C O N T I N U O U S D E L I V E R Y R E P O R T

Respondent Demographics

Methods

We created a survey and distributed it to an audience of software professionals

in the United States, Canada, Western Europe, Eastern Europe, Australia, and

New Zealand. Question formats included multiple choice, free response, and

ranking. Survey links were distributed via email to an opt-in subscriber list,

popups on DZone.com, and short articles soliciting survey responses posted

in a web portal focusing on devops-related topics. The survey was opened and

closed in March 2021. The survey recorded 203 complete responses.

Conclusion

Hopefully the results of this report can shed light on the greater landscape of

continuous delivery, as well as how things are working at your organization. For

more updates on these findings in the future, visit 100deploysaday.com.

Geographic breakdown

United States	 95

Canada	 17

Western Europe	 51

Eastern Europe	 32

Australia	 5

New Zealand	 3

Role breakdown

Lead/Directory/VP of Engineering	 70

or Software Development 	

Software developer/engineer	 88

CI/CD engineer	 15

Platform engineer	 10

Site reliability engineer	 6

Other	 14

https://www.100deploysaday.com/

