O.
-
o
L
o
(@]
L
o
o
<
=
L
O
-
o
oc
L
N

9 SLEUTH

-
<

4

Phase 1 — Deploy Once a Week

Measurements

Milestones U Track Deploy Frequency

O

Track Change Lead Time

U Drill down on activities that drive
Change Lead Time

U Achieve Deploy Frequency of 1x
week

U Achieve Change Lead Time of <5
days

Tooling
to support

U Set up tooling to:
= DORA metrics tracking

Development Practices

O o

00000 O

O o

Use developer branches
Have an always deployable release branch

Have a process to accept or reject changes
to release branch

Use pull request for new changes

Have a process for merging new changes
Achieve 50% unit test coverage

Unit tests are at most 20% flakey

Unit tests run on every commit

Have a mostly automated CD pipeline that
can build a release from release branch

Have a well-defined production environment
Have basic observability system

Designate deploy owner. Recommendation
for this phase: a SRE or infra-minded
developer

Set up tooling for:

* Source control

* Automated testing / Cl
¢ Deployment/CD

* Observability

Communications

U Have a well-defined merge window

U Have a well-defined production deploy
window

U Designate a deploy reviewer

U Have a process for communicating
releases to developers, managers, PMs

O Track high-level work going into a deploy
in issue tracker

U Have a real-time chat tool for developers
and those who own the deploy

U Have a way, even if cumbersome, to
know what’s been deployed

U Have documentation on the deployment
process

O Set up tooling for:

* Issue tracking

e Chat

* Deployment tracking

* Knowledge management

Culture

a

o000 O

(]

Have a weekly or bi-weekly sprint to agree
on task size and tasks for this window

Have an automated Cl against the release
branch, with the results visible to the team

Designate a disturbed role
Include Product Managers in sprint planning
Implement feature flags

Have a recurring planning meetings, code
reviews, and weekly demos

Budget engineering time to keep the
release branch builds passing

Make DORA / Accelerate metrics data
available, with context, to execs

Report on uptime or equivalent metric for
applications

Share high-level information about large
chunks of functionality that are shipping

Set up tooling for:
* Feature flagging

-
#29 SLEUTH

Phase 2 — Deploy Once a Day

Milestones

Measurements

O Track Deploy Frequency and
Change Lead Time

U Define Change Failure rate per
your needs

O Track Change Failure Rate by
codebase and flag

U Track MTTR

0 Have ability to quickly see outliers
on your Failure Rate and MTTR

U Achieve Deploy Frequency of 1x
day

U Achieve Change Lead Time of < 2
days

U Achieve Change Failure Rate of <
15%

O Achieve MTTR of < 1 day

Development Practices

O o

0O 00 0O

O

0O 00O

Use pull request for changes

Have a process like PRGB for code
reviews

75+ % unit test coverage

Unit tests are <10% flakey

Unit tests gate deploys

Have end-to-end tests for critical paths

End-to-end tests run against a production-
like environment

Have a well-defined pre-production
environment, with enforced and
automated soak time

Set up automated process where deploys
are triggered and executed in a CD
pipeline and take < 2 hours

Have advanced observability with
automated alerts

Well-defined on-call roster with clear
escalation chain

Deployers have access to observability
metrics and can diagnose production
systems

Track errors in logs or via tool
Use feature flag
Use configuration-as-code tool

Designate developers as deploy owners

Communications

Q

All developers know how to trigger
deployment process

Have a communication channel to share
when a deploy is happening

Everyone has access to see the important
health metrics

Have a well-defined and automated
escalation policy

Have a well-defined cadence for daily
releases

Have a way to share progress toward a
larger goal with PMs and Managers, and
high-level goals with stakeholders

Have a communication channel between
developers and infrastructure engineers

Inform Customer Support when bug fixes
or support issues have been deployed

Break work into small batches roughly
equal to one deploy

Trace deploys to issues

Have a way to spin up new rooms for
incident response

Have central docs for common scenario
troubleshooting

Have well-defined conditions for
triggering rollback decision

Culture

O Deploy every pull request one at a time, so

you can review batch size while doing code
review

Developers are empowered to deploy their
own changes to all the environments

Developers have enough metrics and an
understanding of their norms to verify
deploys

Developers understand how to escalate and
perform rollback

Enable “continuous demo” by looping in PM
or Design when work has shipped

Adopt six-week cycles to get Devs, PM, and
Design to think in smaller, shippable units

Managers continuously measure the team’s
Accelerate metrics

Managers invest in tooling that allows
identification of bottlenecks and prioritize
removing them

Work with Marketing to coordinate feature
flag launches with marketing launches

Have a consistent way to disseminate
product changes info to Sales and Support

-
#29 SLEUTH

Phase 3 — Deploy One Hundred Times a Day

Milestones

Measurements

O Track DORA metrics by team (e.g.,
programming language, front-end vs.
back-end, etc.)

O Track org-wide anomalies and report
on org-wide trends and performance

O Achieve Elite level performer per
DORA:

U Deploy Frequency of 10+ per day
U Change Lead Time of <1 days

U Change Failure Rate of < 15% of
changes

O MTTR of <1 hour

[]

0O 00000

O

Development Practices

Implement release trains
Implement canary deploys

Implement pre-production environments
with approvals

Implement smoke tests
Implement automated rollbacks
Implement drift detection

Implement centralized tracking “single
pane of glass”

Developers have access to custom
deploy workflows engine that can
automate integrations with other
important systems

Developers own their deploys

Have a dedicated engineering team
owning pipelines, tooling, and platform.

Communications

Have a fully automated high-level deploy
notifications tailored for all functions:
Support, PM, Sales, etc. and executives.

Have a fully automated and self-
explanatory process for how and when
to deploy and rollback

Have notifications that alert teams when
drift has breached a set level

Have a well-defined and published “train
schedules”

Have a way to tell a developer where
their changes are in a deployment
pipeline.

a

Culture

Developers believe in the institutional
safety net: bad changes are highly unlikely
to make it to production, and if they do the
blast radius is small

Developers are confident they can make a
mistake and ship a fix in no time

Developers feel deploys are a non-event

PMs and Designers work in smaller
increments just like Devs

Managers feel the team is punching above
its weight

Management focuses on scaling issues vs.
ability to ship.

-
#29 SLEUTH

