
ZERO TO HUNDRED DEPLOYS A DAY

MILESTONES
CHECKLISTS

Phase 1 – Deploy Once a Week

Measurements Development Practices Communications Culture

Milestones q Track Deploy Frequency

q Track Change Lead Time

q Drill down on activities that drive
Change Lead Time

q Achieve Deploy Frequency of 1x
week

q Achieve Change Lead Time of < 5
days

q Use developer branches

q Have an always deployable release branch

q Have a process to accept or reject changes
to release branch

q Use pull request for new changes

q Have a process for merging new changes

q Achieve 50% unit test coverage

q Unit tests are at most 20% flakey

q Unit tests run on every commit

q Have a mostly automated CD pipeline that
can build a release from release branch

q Have a well-defined production environment

q Have basic observability system

q Designate deploy owner. Recommendation
for this phase: a SRE or infra-minded
developer

q Have a well-defined merge window

q Have a well-defined production deploy
window

q Designate a deploy reviewer

q Have a process for communicating
releases to developers, managers, PMs

q Track high-level work going into a deploy
in issue tracker

q Have a real-time chat tool for developers
and those who own the deploy

q Have a way, even if cumbersome, to
know what’s been deployed

q Have documentation on the deployment
process

q Have a weekly or bi-weekly sprint to agree
on task size and tasks for this window

q Have an automated CI against the release
branch, with the results visible to the team

q Designate a disturbed role

q Include Product Managers in sprint planning

q Implement feature flags

q Have a recurring planning meetings, code
reviews, and weekly demos

q Budget engineering time to keep the
release branch builds passing

q Make DORA / Accelerate metrics data
available, with context, to execs

q Report on uptime or equivalent metric for
applications

q Share high-level information about large
chunks of functionality that are shipping

Tooling
to support

q Set up tooling to:

§ DORA metrics tracking

q Set up tooling for:

• Source control

• Automated testing / CI

• Deployment / CD
• Observability

q Set up tooling for:

• Issue tracking

• Chat

• Deployment tracking
• Knowledge management

q Set up tooling for:

• Feature flagging

Phase 2 – Deploy Once a Day

Measurements Development Practices Communications Culture

Milestones q Track Deploy Frequency and
Change Lead Time

q Define Change Failure rate per
your needs

q Track Change Failure Rate by
codebase and flag

q Track MTTR

q Have ability to quickly see outliers
on your Failure Rate and MTTR

q Achieve Deploy Frequency of 1x
day

q Achieve Change Lead Time of < 2
days

q Achieve Change Failure Rate of <
15%

q Achieve MTTR of < 1 day

q Use pull request for changes

q Have a process like PRGB for code
reviews

q 75+ % unit test coverage

q Unit tests are <10% flakey

q Unit tests gate deploys

q Have end-to-end tests for critical paths

q End-to-end tests run against a production-
like environment

q Have a well-defined pre-production
environment, with enforced and
automated soak time

q Set up automated process where deploys
are triggered and executed in a CD
pipeline and take < 2 hours

q Have advanced observability with
automated alerts

q Well-defined on-call roster with clear
escalation chain

q Deployers have access to observability
metrics and can diagnose production
systems

q Track errors in logs or via tool

q Use feature flag

q Use configuration-as-code tool

q Designate developers as deploy owners

q All developers know how to trigger
deployment process

q Have a communication channel to share
when a deploy is happening

q Everyone has access to see the important
health metrics

q Have a well-defined and automated
escalation policy

q Have a well-defined cadence for daily
releases

q Have a way to share progress toward a
larger goal with PMs and Managers, and
high-level goals with stakeholders

q Have a communication channel between
developers and infrastructure engineers

q Inform Customer Support when bug fixes
or support issues have been deployed

q Break work into small batches roughly
equal to one deploy

q Trace deploys to issues

q Have a way to spin up new rooms for
incident response

q Have central docs for common scenario
troubleshooting

q Have well-defined conditions for
triggering rollback decision

q Deploy every pull request one at a time, so
you can review batch size while doing code
review

q Developers are empowered to deploy their
own changes to all the environments

q Developers have enough metrics and an
understanding of their norms to verify
deploys

q Developers understand how to escalate and
perform rollback

q Enable “continuous demo” by looping in PM
or Design when work has shipped

q Adopt six-week cycles to get Devs, PM, and
Design to think in smaller, shippable units

q Managers continuously measure the team’s
Accelerate metrics

q Managers invest in tooling that allows
identification of bottlenecks and prioritize
removing them

q Work with Marketing to coordinate feature
flag launches with marketing launches

q Have a consistent way to disseminate
product changes info to Sales and Support

Phase 3 – Deploy One Hundred Times a Day

Measurements Development Practices Communications Culture

Milestones q Track DORA metrics by team (e.g.,
programming language, front-end vs.
back-end, etc.)

q Track org-wide anomalies and report
on org-wide trends and performance

q Achieve Elite level performer per
DORA:

q Deploy Frequency of 10+ per day

q Change Lead Time of < 1 days

q Change Failure Rate of < 15% of
changes

q MTTR of < 1 hour

q Implement release trains

q Implement canary deploys

q Implement pre-production environments
with approvals

q Implement smoke tests

q Implement automated rollbacks

q Implement drift detection

q Implement centralized tracking “single
pane of glass”

q Developers have access to custom
deploy workflows engine that can
automate integrations with other
important systems

q Developers own their deploys

q Have a dedicated engineering team
owning pipelines, tooling, and platform.

q Have a fully automated high-level deploy
notifications tailored for all functions:
Support, PM, Sales, etc. and executives.

q Have a fully automated and self-
explanatory process for how and when
to deploy and rollback

q Have notifications that alert teams when
drift has breached a set level

q Have a well-defined and published “train
schedules”

q Have a way to tell a developer where
their changes are in a deployment
pipeline.

q Developers believe in the institutional
safety net: bad changes are highly unlikely
to make it to production, and if they do the
blast radius is small

q Developers are confident they can make a
mistake and ship a fix in no time

q Developers feel deploys are a non-event

q PMs and Designers work in smaller
increments just like Devs

q Managers feel the team is punching above
its weight

q Management focuses on scaling issues vs.
ability to ship.

