
Rails Performance Fieldbook

Scout APM

01

04

02

03

Table of Contents

06 Common Pitfalls

05

Memory Bloat vs. Memory Leak

What Goes Up Doesn’t Come Down

Endpoint Impact on Memory Usage

What You Need to Know About Memory Bloat

Using Scout to Fix Memory Bloat

01

Rails memory issues are frequently more difficult - and more
urgent - to resolve than performance problems: a slow Rails app
may be painful, but if your app chews through all available memory
on a host, the app is down.

This fieldbook shows how to identify memory-hungry
controller-actions and specific memory-hungry requests, provides a
visual representation of common pitfalls, and suggestions on
fixing memory bloat.

Debugging Memory
Bloat

Memory bloat is a sharp increase in memory usage due to the
allocation of many objects. It’s a more time-sensitive problem than a
memory leak, which is a slow, continued increase in memory usage
and can be mitigated via scheduled restarts.

Visually, here’s the difference between bloat and a leak:

While memory bloat can quickly cripple a site, it’s actually easier to
track down the root cause than a memory leak.

If your app is suffering from high memory usage, it’s best to
investigate memory bloat first given it’s an easier problem to
solve than a leak.

Memory Bloat vs.
Memory Leak

CHAPTER 1

02

03

If one of your app’s power users happens to trigger a slow SQL
query, the impact is momentary. Performance will likely return to
normal: it’s rare for a slow query to trigger long-term poor
performance.

If, however, that user happens to perform an action that triggers
memory bloat, the increased memory usage will be present for the
life of the Ruby process. While Ruby does release memory, it
happens very slowly.

It’s best to think of your app’s memory usage as a high-water mark:
memory usage has no where to go but up.

This behavior changes how you should debug a memory problem
versus a performance issue.

What Goes Up Doesn’t
Come Down

CHAPTER 2

04

The chart below shows requests from two endpoints, Endpoint A
and Endpoint B. Each circle represents a single request.

Which endpoint has a greater impact on memory usage?

Analysis:

• Endpoint A has greater throughput

• Endpoint A averages more allocations per-request

• Endpoint A allocates far more objects, in total, over the time period

If the y-axis was “response time” and you were optimizing CPU or
database resources, you’d very likely start optimizing Endpoint A
first. However, since we’re optimizing memory, look for the
Endpoint with the single request that triggers the most
allocations. In this case, Endpoint B has the greatest impact on
memory usage.

Which Endpoint Impacts
Memory Usage More?

CHAPTER 3

05

1. Memory Usage is a high-water mark: Your Rails app will likely
recover quickly when it serves a slow request: a single slow request
doesn’t have a long-lasting impact. This is not the case for
memory-hungry requests: just one allocation-heavy request will
have a long-lasting impact on your Rail’s app’s memory usage.

2. Memory bloat is frequently caused by power users:
controller-actions that work fine for most users will frequently
buckle under the weight of power users. A single request that
renders the results of 1,000 ActiveRecord objects vs. 10 will trigger
many allocations and have a long-term impact on your app’s
memory usage.

3. Focus on the maximum number of allocations per
controller-action: a normally lightweight action that triggers a large
number of allocations on a single request will have a significant
impact on memory usage. Note how this is very different than
optimizing CPU or database resources across an app.

4. Allocations and memory increases aren’t correlated on a
long-running app: Once your app’s memory heap size has grown
to accommodate a significant number of objects, a request that
requires a large number of allocations won’t necessarily trigger a
memory increase. If the same request happened early in the Rails
process’ lifetime, it likely would trigger a memory increase.

5. You will see a number of memory increases when a Rails
application is started: Ruby loads libraries dynamically, so some
libraries won’t be loaded until requests are processed. It’s important
to filter out these requests from your analysis.

What You Need To Know
About Memory Bloat

CHAPTER 4

06

CHAPTER 5

Scout can help you identify memory-hungry areas of your Rails app
by:

1. Isolating the controller-actions generating the greatest
percentage of allocations.

2. Viewing transactions traces of specific memory-hungry requests
to isolate hotspots to specific areas of code.

3. Identifying users triggering memory bloat

Using Scout To Fix
Memory Bloat

Isolating allocation-heavy actions
If you’re looking for a general understanding of which
controller-actions are responsible for the greatest amount of
memory bloat in your Rails app, a good starting point is the
“Endpoints” section of Scout:

Sort by the “% Allocations” column. This column represents the

https://ter.li/reuptl

07

maximum number of allocations recorded for any single request for
the given controller-action and timeframe. Why max and not mean
allocations?

Click on an endpoint to dive into the Endpoint Detail view. From here,
you can click the “Allocations - Max” chart panel to view allocations
over time.

Beneath the overview chart, you’ll see traces Scout captured over
the current time period. Click the “Most Allocations” sort field from
the pulldown. You’ll see traces ordered from most to least
allocations:

08

Reading a Scout memory trace
The screenshots below are generated from actual Scout transaction
traces. A quick primer on the trace organization:

Method calls displayed in the trace details are organized from most
to least allocations. The horizontal bar on the right visually
represents the number of allocations associated with the method
call(s) on the left. Some of the bars may have two shades of green:
the lighter green represents the control case (what we view as a
normal request) and the darker green represents the
memory-hungry case.

It’s common for memory bloat to be isolated to a specific set of
users. Use Scout’s context api to associate your app’s current_user
with each transaction trace if it’s not easily identify from a trace url.

Identifying users triggering
memory bloat

09

ActiveRecord: rendering a large
number of objects
When rendering the results of an ActiveRecord query that returns
a large number of objects, the majority of allocations frequently
come from the view and not from instantiating the ActiveRecord
objects. Many Strings are allocated to represent each object’s
attributes as well as any HTML template code around them (table
rows and other HTML elements).

The screenshot below illustrates the difference between rendering a
view with 1,000 records and one with ten. Two-thirds of allocations
reside in the view:

CHAPTER 6

Memory bloat often reveals itself in specific patterns - these
patterns are illustrated via the Scout transaction trace below.

Common Pitfalls

10

An example where this occurs:

 def employees

 @ company = Company . find (params [: id])

 @ company . employees

 end

Fetching and rendering all employees for a company may work fine
for the latest small startup, but it fall over for Apple, Inc.

The fix? Pagination via will_paginate or Kaminari.

ActiveRecord: N+1 Database Queries
You probably already know N+1 queries are low-hanging fruit when
it comes to speeding up your controller-actions. However, in
addition to frequently being slower than a proper includes , they
result in more allocations.

The example below illustrates an N+1 when rendering out a list of
1000 tracks and their associated albums. Roughly 7x more
allocations result from the N+1:

https://github.com/mislav/will_paginate
https://github.com/amatsuda/kaminari

11

The steps to fixing N+1 queries are well-documented: the larger
challenge is finding the worst offenders. Scout can be used to
identify the worst-offending N+1 queries in your app.

ActiveRecord: N+1 Database Queries
The standard ActiveRecord finder selects all columns from the
respective table:

User.all # User Load (756.6ms) SELECT “users”.* FROM “users”

If a table contains a large column (binary or text), there’s a cost both
in terms of memory usage and time if that column is returned. This
is true even if the column is never accessed.

Identifying this scenario is more involved: if a large column isn’t
accessed, it will not trigger additional Ruby allocations and will
not appear in a memory trace. Instead, look at the change in
memory for that request:

https://ter.li/bbqkjn
https://ter.li/bbqkjn

12

It’s also likely the query may run slower as more data is read from
the database and sent across the wire to your app host: look for a
slow query in the “Time Breakdown” section of the trace.

The fix

A couple possible approaches:

1. Only select what you need: User.select(:name) .

2. Move the large column to a dedicated table so the default finder is
fast by default.

Uploading a large file
Your app will incur a significant memory increase to handle large
file uploads. For example, the trace below illustrates the increase in
memory usage when uploading a 1 GB file vs. a 1K file:

13

The majority of allocations occur unwrapping the file in the
framework middleware. A common scenario where this behavior
occurs: an app manipulates uploaded images that are typically 100
to 500 kB in size, but then a user attempts to upload a 10 MB image.

The workaround: send large files directly to a third party like S3. See
Heroku’s docs on Direct to S3 Image Uploads in Rails.

Suggested Reading

That’s Not a Memory Leak, It’s Bloat - This digs into more specifics
on common ActiveRecord patterns that contribute to bloat. While
the post is from 2009, and as expected, some of the tools are
outdated, the Ruby theories still apply.

The Complete Guide to Rails Performance - This book (purchase
required) has a chapter dedicated to memory bloat and leaks that
digs deeper into the internals of Ruby memory usage.

How Ruby Uses Memory - This article takes a deeper into the
internals of Ruby memory usage.

https://devcenter.heroku.com/articles/direct-to-s3-image-uploads-in-rails
https://devcenter.heroku.com/articles/direct-to-s3-image-uploads-in-rails
https://blog.engineyard.com/thats-not-a-memory-leak-its-bloat
https://www.railsspeed.com/
https://www.sitepoint.com/ruby-uses-memory/

