
Application Performance Metrics Guide

Scout APM

01

04

02

05

03

Section

Table of Contents

Sm

Section Title

Section Title Longer

Summary

App Performance Monitoring Tools

How to Quantify App Performance

7 Key Application Performance Metrics

01

The 7 Application
Performance

Metrics Worth
Measuring

When it comes to releasing new features out into the wild,
developers and managers alike need to toe the line between speed
and performance.

Take an all too common situation, where sales submits a high
priority ticket to the development team that’s a blocker for an
enterprise deal coming through the pipeline. This blocker/feature
requires a database query that is suspected to slow page speed for
some customers, but the developer(s) isn’t 100% certain when these
instances occur or if the difference is more than negligible.

This is where a team can leverage an APM (Application Performance
Monitoring) system to quicken development times without
neglecting performance. With an APM system, developers can
deploy their code and watch for changes in performance. If a
newly released feature is causing performance issues, the team can
go back and address these as needed. Reducing premature
optimization and increasing feature deployments.

Just installing an APM system is a major step forward for a
development team. In minutes you and your team will start to see
and evaluate both high and lower-level metrics. Once those metrics
have been gleaned over, the real magic lies in knowing how to

02

effectively use an APM system while understanding and analyzing
the significance of the metrics, both independently and together.

Take the above example - after deploying the new feature for the
sale, the authoring developer(s) saw a slight uptick in average
response time but saw quite a significant increase in 95th percentile
response time. What the developer feared has materialized. In some
cases, the introduced SQL query (or queries) has significantly
impacted a portion of customers.

In this guide, we are going to take a look at a few metrics, both
independently and in conjunction with one another, which we believe
can help you make the most of an APM system.

As the great Jack Welch once put it, “if it isn’t measurable, it isn’t
manageable.”

Development teams need insights into what their code is doing
under the hood and how its impacting performance.

What the end-user interacts with is layers upon layers of features
that have built up over time. It’s important for the development
teams to see not only the high-level overview metrics of how their
app is performing, but also being able to dig down and see which
lines of code are causing slowness for either a single endpoint or
background job.

How to Quantify App
Performance

CHAPTER 1

Being able to generate quantifiable metrics for your app is as easy as
registering with Scout, adding a few lines of code, and deploying.

In just a few minutes after you deploy, you will be able to visualize
the data right before your eyes.

With our highly configurable charts and in-depth tracking and
analysis, you and your team are one step closer to diagnosing your
application’s bottlenecks.

03

App Performance
Monitoring Tools

CHAPTER 2

The ability to add an APM solution in just a few minutes enables
developers to get insights into the application immediately.

The major question still hasn’t been answered though, how do we
interpret the data?

Below we will discuss some of the metrics that Scout quantifies, as
well as how to read them both independently as well as in
connection with one another.

7 Key Application
Performance Metrics

CHAPTER 3

https://ter.li/e7flac

04

1. Throughput
At first glance this may be a metric that some would say is more of a
KPI, but throughput is still the quintessential APM metric.

If I were to tell you (or your on-call team) that your average
throughput was going to 20x at 3 a.m. this morning, you or
your team would probably think twice about going to bed a little
earlier than usual.

Being able to see what one’s throughput usually is, and how much
it varies, can help engineers gauge how many servers they need to
support the traffic.

Additionally, throughput can help engineers assess how users will
perceive their site. Throughput also plays a major role in calculating
Little’s Law. A very important, and not so often talked about, APM
metric. We will discuss this a little more in the Queue Time section.

05

2. Average Response Time
While maybe not the shiniest metric on the block, average response
time is a cornerstone metric that helps gauge how one’s application
is performing as a whole.

This metric, combined with deploy tracking, can be extremely useful
for developers.

Average response time can show whether a new deploy has in-
creased average load times for all users.

This metric, combined with drilling down on specific endpoints, can
help developers understand whether an area of code needs to be
addressed immediately.

We certainly don’t want /cart or/ checkout average response times
going up.

06

3. Queue Time
There are a few queues that most developers need to be cognizant
of when it comes to an application’s performance: requests
flowing from load balancers to web servers and background job
worker queues.

When we talk about Queue Time, we have to recognize that this is a
measurable side effect of Little’s Law. Little’s law is a queueing
theory/law that can be used to understand potential bottlenecks in
said queues. It is an algebraic expression that describes, in relation
to web applications, the amount of transactions in a system is equal
to the arrival rate (throughput) multiplied by the average time in the
system (average response time).

Using this we can rework the equation to figure out what happens
when either throughput goes up or response time goes up.

With load balancers, seeing an increase in queue time is an
indication that the servers are running out of resources. Since queue
time is just a measurable effect of Little’s Law, we can therefore use
Little’s Law to cure queue time.

One way is to reduce average response time via increasing
performance or doing less work per request, the other is to have a
higher throughput tolerance via adding more servers.

07

Average response time is great for looking at things from a
high-level perspective.

The only issue with averages, in general, is that they don’t do a great
job capturing what happens to outliers.

The average response rate could drop a little for most customers,
increase for outliers, and it looks like nothing has happened.

That’s where the 95th percentile response time shines.

When looking out past two sigmas, we can find endpoints that look
normal from a quick glance, but underneath trouble brews for some
of our users.

With the example we talked about above, this is the metric (and
potentially Apdex) that would spot the issue.

4. 95% Response Time

When people talk about APM metrics, people usually refer to Apdex.

So what is Apdex? Apdex is a measurement of a user’s general level
of satisfaction when using an application.

The value of the Apdex metric can range between 0 and 1, with an
Apdex score of 1 indicating that all of our customers are fully
satisfied, whereas an Apdex score of 0 tells us that none of our
customers are happy.

This is done by categorizing requests into three buckets -- satisfied,
tolerating, and frustrated. If everyone is satisfied then one’s Apdex
score will be 1, and on the other hand, if everyone is frustrated, then
one’s Apdex score will be 0.

This can be a useful metric to look at when deploying new features.
For example, if part of the system takes longer to respond after a
feature update, then the user naturally starts to become frustrated.

What constitutes a request being marked as frustrated depends
on the app, and is a threshold that can be configured in Scout APM.
By default, Scout APM sets the threshold at 500ms with frustrated
requests being 4x this threshold.

5. Apdex

08

https://ter.li/e7flac
https://ter.li/e7flac

09

Whether it be 404s, 408s, or 500s, no user ever wants to encounter
an error.

Being able to track errors and pin down exactly how they occurred is
a powerful capability to have in one’s APM system.

Having the ability to receive notifications right when errors occur,
as well as seeing the number of times the error occurred that day, is
necessary to know whether this issue needs to be addressed
immediately, and/or if these errors are part of something larger.

6. Errors

10

Different languages allocate memory differently, and purchasing
high memory servers is expensive.

Knowing how and when your language both allocates and cleans
up memory is essential to scaling - from both a technical and
financial perspective.

Ruby, for example, likes to hang on to allocated memory as it
expects further use of this memory to be used shortly.

This can be an issue depending on if one’s application is seeing a
massive throughput increase in different areas.

7. Memory

11

The old saying “a stitch in time saves nine” is an important adage
that is super applicable for performance monitoring.

Scout understands that development teams are always pressed for
time, and sometimes these performance issues are time-consuming
to investigate.

Yet being able to spot bottlenecks as they are released is a lot
easier to deal with than when multiple bottlenecks have started to
pile upon one another.

We give development teams bandwidth back by being able to gain
fast insights into how their code is performing from both a micro and
macro perspective.

Additionally, Scout enables teams to spot fires on the horizon before
they lead to high priority incidents.

Are you interested in bringing your application monitoring to a new
level? Sign up for a free trial with Scout today, and see why Scout is
trusted by 1000s of engineers at leading-edge companies.

Summary

https://ter.li/e7flac

