
Scout APM
Kubernetes vs. Docker Comparison Guide

What is Kubernetes?

Table of Contents

05

04

03

02

01 Overview

What is Docker?

Final Analysis

01

Kubernetes
vs. Docker

Kubernetes and Docker each play a vital role in modern,
microservices-based application development. Since Kubernetes and
Docker work in unison to help develop, deploy, and manage
large-scale applications – they are not mutually exclusive
technologies and they are certainly not in competition with each
other. Nevertheless, Kubernetes and Docker are often
misunderstood by the non-developer community.

To clear up the confusion around Kubernetes vs. Docker, we’ve
written this guide. After reading each section, you will understand
what Kubernetes and Docker are, how they work together, and why
are they essential to modern application development.

02

Let’s start by defining the core concepts of this discussion.

Containerization: Containerization is a strategy for running
applications (and microservices) in a virtual runtime environment
that isolates the application from other systems. A container is a
server abstraction that allows the application inside it to function as
if it were running on a private operating system kernel of its own.
Through containerization, you can run multiple apps on the same OS
instance, but none of these applications will know about each other.

Docker: Docker is an open-source containerization tool that allows
you to create, run, manage, and automate the deployment of
containerized apps (and microservices) that run on the same
operating system instance. In this way, Docker supports building a
microservices-based app architecture that is made up of multiple,
independently-running apps and services. A Docker node can only
manage the containerized apps and microservices that are running
on the operating system instance where the node is installed.

Kubernetes: Kubernetes is an open-source container orchestration
tool that allows you to manage an architecture that includes
multiple Docker nodes running on different operating system
instances. When your container-based architecture includes
containers that are running on multiple operating system instances,
Kubernetes lets you automate container deployment,
load-balancing, networking, and scaling for groups of containers that
consist of containers running on different Docker nodes.

Containerization,
Kubernetes, and Docker
Overview

CHAPTER 1

03

Containers are primarily used to build microservices-based
applications. In contrast to a traditional monolithic application -
where all of an application’s services and features are coded into the
same piece of programming - a microservices-based architecture
breaks a monolith into its component services and features.

The microservices architecture then runs each of these services and
features as an autonomous application of its own (a microservice).
By loosely connecting these microservices with APIs, the
microservices can interact with each other to form a more flexible
and “pluggable” architecture that’s easier to update and scale.

Docker containers fit into the microservices equation because they
are an efficient way to run each microservice in isolation. Compared
to running each microservice on its own virtual machine (VMs), for
example, containers are faster to start up, use fewer system
resources, and don’t require a separate OS instance.

Here are some of the benefits of containerization for
microservices-based architectures:

• Saves money: You can save money on operating system
 licensing fees because, unlike a VM, multiple containers can
 run on the same OS instance, which saves money on OS
 license fees. Containers are also lighter weight and less taxing
 on server resources than virtual machines, which saves money
 on server costs.

• More efficient and faster: Compared to virtual machines,
 containers require fewer system resources to operate. They
 can be as small as 10 megabytes and you can limit their
 memory and CPU. As lightweight systems, they are extremely
 fast to start up, destroy, and replicate.

Why Use Docker Containers?

04

• A pluggable, flexible architecture: Compared to the services
 that form a monolithic application, containerized microservices
 are less interdependent on the other services that comprise
 the system. This achieves a “pluggable,” flexible architecture
 that facilitates updating, adding, or removing services and
 features without negatively impacting the overall system.

Why Deploy Multiple Docker Nodes on
Different Servers?
Using a container orchestration tool like Kubernetes to build a
system made up of multiple Docker nodes (with containerized apps
running on different OS instances) offers the following advantages:

• Highly available: Distributing an architecture across multiple
 Docker nodes supports a highly available system. With
 replicated nodes and their associated containers running o
 different operating systems, if some containers, nodes, or OS
 kernels go down, the replicated Docker nodes can pick up the
 slack and keep the system online.

• Improved scalability: When the workload on one server
 instance spikes, container orchestration tools can
 automatically spin-up and add new Docker nodes and
 containers (on fresh OS instances) as required. This creates a
 system that can scale to handle virtually any level of traffic.

05

When talking about Docker, it’s important to determine
whether you’re referring to (1) the docker container file format or
(2) the open-source platform that helps developers create, run, and
automate the deployment of docker files:

1. The container file format: As a container file format, a docker
 image contains only the components – code, libraries, tools,
 and dependencies – that an application needs to run in
 isolation. In recent years, docker images have become the
 de-facto format for running containerized applications and
 containerized microservices.

2. The open-source containerization platform: In addition to
 being a file format, Docker is also an open-source suite of
 containerization tools that are accessible via the
 Windows/Mac dashboard called Docker Desktop. This
 platform features containerization tools like Docker Engine, a
 runtime environment that allows you to create, run, and
 automate the deployment of containers on different operating
 systems. It also includes Docker Hub, a repository that allows
 you to find, publish, and share Docker images. Docker Desktop
 also includes tools like Docker CLI (Command Line Interface)
 Client, Docker Compose, Notary, Credential Helper, Docker
 Swarm, and Kubernetes.

CHAPTER 2

What Is Docker?
Harnessing the Power
of Containers In-Depth

06

As a containerization tool, Docker’s operation depends on a
client-server architecture that consist of several fundamental
components:

• Docker Host and Docker Daemon: Docker Host allows you to
 run the Docker Engine server instance, i.e., Docker daemon.
 Docker daemon exposes a REST API that allows operators and
 clients to interact with and control the daemon. The docker
 daemon monitors all requests and controls docker and docker
 objects. It can interact with other daemons if required.

• Docker Objects: Docker objects include docker images
 (container files), containers, volumes, plugins, networks, etc.

• Docker CLI Client: The Command Line Client allows you to
 interact with the Docker daemon by submitting and
 automating API commands. The REST API allows the client to
 submit commands to build, run, or distribute Docker
 containers that are saved (or will be saved) in Docker Registry.
 CLI Client can interact with more than one Docker daemon.

• Docker Registry: Docker Registry allows you to store and
 distribute Docker container images. Docker Hub is the hosted
 version of Registry that includes more features like webhooks,
 organizations, teams, and automated builds.

Here’s how these components work together:

1. Create a Docker image: Submit a “build” command to the
 Docker daemon API with Docker CLI Client.

2. Save the image: Docker daemon creates the Docker image
 and saves it to Docker Registry. Docker daemon can save the
 image locally or remotely via Docker Hub.

How Docker Works

07

3. Pull an image from the registry (alternatively): Instead of
 creating a new Docker image, you can use a “pull” command,
 and pull an existing container image from Docker Registry or
 Docker Hub.

4. Deploy the Docker container: Run the docker image by
 submitting a “run” command to Docker daemon with Docker
 CLI Client. This deploys the container.

When developing an application architecture or IT infrastructure that
consists of several containers, you’ll need a container
orchestration tool for managing resources across the system. The
simplest of these tools is Docker Compose. Docker Compose allows
you to orchestrate, manage, and schedule the deployment of
containers for a multi-container system.

Docker Compose is only useful for container orchestration when all
of the containers are running on a single Docker node (i.e., a single
server instance). Managing and deploying containers across multiple
Docker nodes that are running on different OS instances requires
more sophisticated tools – like Docker Swarm or Kubernetes – for
container orchestration (more on this in the next section).

What Is Container Orchestration?

08

To sum up this section on Docker, let’s review the most compelling
advantages of using Docker containers:

• Faster startup: An app or microservice running on its own
 virtual machine takes minutes to launch because you need to
 wait for a new operating system instance to come online. In
 contrast, a containerized microservice spins up in seconds
 because it’s simply another process on an already-running OS.

• Easier to scale: Because you can spin up and shut down
 containerized apps so quickly – without rebooting or shutting
 down an entire virtual machine – it’s fast, easy, and more
 economical to scale up or scale down applications that
 consist of containerized apps.

• More flexible deployment: You don’t have to set up a specific
 type of OS environment to test, distribute, and share a docker
 image. Docker lets you simply download the appropriate
 Docker image, and you can run the container (and the app it
 contains) on any server and virtually any OS. Docker’s available
 for Mac, Windows, Debian, and other operating systems.

• Cost savings: Due to their more efficient use of compute
 resources, you can run more containerized apps (compared to
 VMs) on a single server. This saves money on processing and
 OS licensing fees.

Advantages of Using Docker
Containers

When a microservices-based application (or IT infrastructure)
consists of many different containers running on many different
servers, managing the system is complicated. This is where the
open-source container orchestration tool like Kubernetes can help.

Kubernetes offers an API that developers use to manage and
automate requests between containerized apps, deploy or replicate
Docker nodes and containers when required, and manage processing
power to container instances in response to user/client traffic levels.
Kubernetes gives you a single command line or dashboard to set the
rules that organize your container-based architecture.

Another way to understand Kubernetes is to see it as a
“meta-process” that automates and controls the lifecycle of the
containerized applications that form an architecture. Developers
code this process as a set of deployment instructions rendered in
the human-readable programming language YAML.

Once the process is set, the Kubernetes deployment supervises and
controls incoming requests and performance across the architecture
according to the instructions.

By following these rules and limits set by developers, Kubernetes
knows when to deploy, replicate, restart, and scale containers (and
groups of containers) and how to load balance incoming requests
and divert processing power to achieve optimum system
performance across the network.

09

What Is Kubernetes?
Enter Container
Orchestration

CHAPTER 3

When managing a container-based system with Kubernetes, the
entire architecture – or the group of containers that Kubernetes
orchestrates – is called a “Kubernetes cluster.” A Kubernetes cluster
needs the following three components to operate:

Pods: A pod is the basic unit of deployment within the
Kubernetes cluster. A pod consists of a single containerized app or a
group of containerized applications that need each other to operate.
For example, if a web server requires a Redis caching server, both get
wrapped into the same pod – and both get spawned when that
particular pod is deployed. Kubernetes’ ability to manage
multi-container pods is one of its advantages as a container
orchestration tool; however, if a containerized app can run on its
own, it can be assigned to a single-container pod.

Worker Nodes (Docker Nodes): A Worker node refers to a single
Docker instance running on its own OS instance. A Docker node –
which is sometimes called a worker node or just a node – can run a
single or multiple containerized applications.

A worker node consists of the following components:

• kubelet: The kubelet transmits information regarding the
 current status of the node to the Kubernetes Master Node. It
 also executes master node requests.

• kube-proxy: The kube-proxy serves as a network proxy so the
 containerized microservices on the worker node can interact
 with one other, with other pods, the Kubernetes cluster, and
 clients outside the cluster.

• Docker: Each worker node is running an instance of Docker
 Engine, which ultimately manages the containers inside it.

How Kubernetes Works

10

11

Kubernetes master node: The Kubernetes master node is the core
of the operation. This is the OS instance where you install and run
Kubernetes. It hosts the Kubernetes process that schedules pods
and distributes resources to pods that are running on the worker
nodes that make up the architecture. Most Kubernetes clusters have
more than one master node running for redundancy purposes.

A Kubernetes master node consists of the following components:

• kube-apiserver: The kube-apiserver exposes an API for
 submitting commands and requests to Kubernetes.
 Developers use a command-line utility such as kubectl or
 WebUI dashboards to interact with this API. Developers use
 the kube-apiserver API to set limits and rules for the
 Kubernetes cluster.

• kube-control-manager: The kube-control-manager keeps
 track of the entire cluster. It knows how many of each pod
 are currently running and keeps track of other data that is
 crucial to orchestrating the cluster.
 Kube-control-manager monitors the state of the cluster by
 watching activity on the kube-apiserver.

• kube-scheduler: This is the “decision-maker” that schedules
 events and jobs across the Kubernetes cluster based on the
 limits/rules that operators set, available resources, and the
 current state of the cluster. Kube-scheduler monitors the
 state of the Kubernetes cluster by watching activity on
 kube-apiserver.

• etcd: Etcd is where the Kubernetes Master Node stores the
 limits and rules that govern the orchestration of the
 Kubernetes cluster. As the “storage stack” for the master
 node, etcd holds information related to policies, system
 state, etc.

12

Here are some of the most compelling advantages of using
Kubernetes for container orchestration:

• Declarative by nature: Developers code the rules and limits
 that define the state of a Kubernetes cluster in YAML. Since
 you code these instructions in YAML, you can monitor
 changes, track version control, encourage collaboration
 among team members.

• Cloud-agnostic and portable: Kubernetes is compatible with
 virtually any public cloud, on-premises hardware, or
 bare-metal server – so you can deploy it virtually anywhere.
 That being said, some cloud infrastructures are better than
 others, so make sure that the provider you choose supports
 load balancing and other features.

• Ideal for large, highly-scalable microservices-based
 architectures: Kubernetes supports nearly unlimited scalability.
 This open-source tool is ideal for managing architectures
 consisting of hundreds of thousands of containerized
 microservices. When scaling an application is required to
 manage more traffic, operators can set limits and rules that
 horizontally scale the number of containers available to the
 system in response to usage metrics.

• Efficient resource optimization and cost savings: Kubernetes
 automates whether to run or shut down worker nodes within
 the cluster according to your specifications. This ensures the
 efficient use of server resources for faster processing, greater
 system reliability, and more cost savings.

Advantages of Using Kubernetes for
Container Orchestration

13

• High availability: Kubernetes achieves a highly available
 system through its capacity to spawn new pods and run
 redundant containers. Moreover, when updating existing
 containerized apps, you can test new iterations of pods before
 destroying old ones. This offers redundancy and ensures
 system stability in the event that the updated containers fail.

• Self-healing: Kubernetes achieves a self-healing system by
 automatically restarting failed containers and shutting down
 and replacing frozen containers in accordance with
 user-defined rules. Kubernetes can also replicate containers
 that were running on a failed node by spinning them up on
 a different node.

When to Use Kubernetes
vs. Docker Swarm
A comparison of Kubernetes and Docker wouldn’t be complete
without addressing Docker Swarm, a container orchestration tool
that Docker developed for managing multi-node systems. The fact
is, both Kubernetes and Docker Swarm serve distinct use-cases.

When to use Docker Swarm: Docker Swarm is a powerful solution
capable of managing an architecture of thousands of containers.

Since Swarm is easier to learn and use than Kubernetes, it is most
appropriate for teams that are less “tech-savvy.” It also offers
automated configurations and easier deployment, so it’s great for
teams that want a faster set-up process. Nevertheless, Swarm has
fewer capabilities, so it may not be appropriate when you have an
exhaustive list of configuration requirements. Swarm is also lacking
when it comes to native monitoring capabilities and the API is limited
in functionality.

14

When to use Kubernetes: Kubernetes offers unmatched capabilities
when setting policies for high-availability and auto-scaling in
large-scale systems. Therefore, it’s ideal when orchestrating
complex architecture that consists of hundreds of thousands of
containers. The downside of Kubernetes is that it comes with a
steep learning curve and set-up takes longer than Swarm.

Ultimately, if you have a skilled team of engineers and you are
building a complex infrastructure, Kubernetes is the right choice for
your use-case.

After reading this guide, you should have a clear understanding of
how Docker and Kubernetes work together to build and orchestrate
a large-scale container-based application architecture. As a final
review of what we’ve covered:

Docker serves as the core of any container-based architecture
because Docker allows you to create and automate the deployment
of multiple containerized apps on a single OS instance.

Kubernetes allows us to manage a more complex architecture that
consists of multiple Docker nodes and containers – even hundreds
of thousands of containers – running on different operating
system instances across a network. As a container orchestration
tool, Kubernetes automates the management, scaling, updating,

CHAPTER 4

Final Thoughts on
Kubernetes vs. Docker

15

adding, removing, and load-balancing across a cluster of containers
running on different operating system instances.

When used in conjunction, Docker and Kubernetes can tackle
virtually any kind of scaling and container orchestration challenges
faced by a microservices-based application or IT infrastructure.

Docker and Kubernetes are fundamental aspects of modern
application design – especially when you’re building and maintaining
a complex, highly scalable system. However, they are just two arms
of a many-armed beast. In addition to these containerization tools,
you also need a strategy to monitor the performance of the
individual apps and services that make up the system.

This is where Scout APM can help. Scout is an application
performance monitoring product that helps developers drill down
into the fine-grained details of app performance and stability issues.
With Scout, you can get to the bottom of the exact cause of N+1
database queries, sluggish queries, memory bloat, and other
performance abnormalities.

Start your free 14-day trial today!

https://ter.li/e2z9t3
https://ter.li/e2z9t3

