
Making Sense of the
Container Ecosystem
Comparing Kubernetes with Docker Swarm,

Apache Mesos and AWS EC2 Container Service

eBook

Introduction to Container Orchestration
Containers make it very easy to run cloud-native applications on physical or virtual infrastruc-
ture. They are lighter weight compared to VMs and make more efficient use of the underlying
infrastructure. Containers are meant to make it easy to turn apps on and off to meet fluctuating demand
and move apps seamlessly between different environments or even clouds. While the container runtime APIs
meet the needs of managing one container on one host, they are not suited to manage multiple containers deployed
on multiple hosts. This is where we need to look at container orchestration tools.

Container Orchestration tools can manage complex, multi-container apps deployed on a cluster of machines. These
tools can treat an entire cluster as a single entity for deployment and management. Container orchestration tools can
automate all aspects from initial placement, scheduling and deployment to updates and health monitoring functions
that support scaling and failover. Container orchestration tools provide built-in support for a number of painpoints de-
velopers face while building production applications, such as service discovery, load balancing, rolling upgrades, health
monitoring, auto-scaling etc.

Capabilities of Container Orchestration Tools
Here are some of the main capabilities that a modern container orchestration platform will typically provide:

1

•	 Provisioning
 	 Container orchestration tools can provision or schedule containers within the cluster and launch them. As part

of this, the tool will determine the right placement for the containers by selecting an appropriate host based on
the specified constraints such as resource requirements, location affinity etc. The underlying goal is to increase
utilization of the available resources. Most tools will be agnostic to the underlying infrastructure provider and, in
theory, should be able to move containers across environments and clouds.

•	 Configuration-as-text
 	 Container orchestration tools can load the application blueprint from a schema defined in YAML or JSON. These

are popular languages to define infrastructure-as-code similar to OpenStack Heat templates, Puppet Manifests
or Chef recipes. Defining the blueprint in this manner makes it easy for DevOps teams to edit, share and version
the configurations and provide repeatable deployments across development, testing and production.

•	 Monitoring
 	 Container orchestration tools will track and monitor the health of the containers and hosts in the cluster. If a

container crashes, a new one can be spun up quickly. If a host fails, the tool will restart the failed containers on
another host. It will also run specified health checks at the appropriate frequency and update the list of available
nodes based on the results. In short, the tool will ensure that the current state of the cluster matches the config-
uration specified.

•	 Rolling Upgrades and Rollback
 	 One of the most desired ability is for the orchestration tool to perform ‘rolling upgrades’ of the application

where a new version is applied incrementally across the cluster. Traffic is routed appropriately as containers go
down temporarily to receive the update. A rolling update guarantees a minimum number of “ready” containers
at any point, so that all old containers are not replaced if there aren’t enough healthy new containers to replace
them. If, however, the new version doesn’t perform as expected then the orchestration tool can also rollback the
applied change.

•	 Policies for Placement, Scalability etc.
 	 Container orchestration tools provide a way to define policies for host placement, security, performance and

high availability. When configured correctly, container orchestration platforms can enable organizations to
deploy and operate containerized application workloads in a secure, reliable and scalable way. For example, an
application can be scaled up automatically based on CPU usage of the containers.

Making Sense of the
Container Ecosystem

2

Kubernetes
According to the Kubernetes website – “Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.” Kubernetes was built by Google based on their experience running contain-
ers in production over the last decade. See below for a Kubernetes architecture diagram and the following explanation.

Controller Manager

Scheduler API Server

K8S Master(s)

Client
Kubectl
Rest API

etcd

LoadBalancer

K8S Node

Kubelet

Pod Pod ... Pod

Proxy

Cluster-1

•	 Service Discovery
 	 Since containers encourage a microservices based architecture, service discovery becomes a critical function and

is provided in different ways by container orchestration platforms e.g. DNS or proxy-based etc. For example, a
web application front-end dynamically discovering another microservice or a database.

•	 Ease of Administration
 	 Container orchestration tools themselves should be easy to deploy, configure and setup for Administrators.

They should connect to existing IT tools for SSO, RBAC etc. An extensible architecture will connect to external
systems such as local or cloud storage, networking systems etc.

This was a brief overview of the importance of choosing the right container orchestration tool to deploy and manage
cloud-native applications. Below we’ll introduce Kubernetes, Mesos, Docker Swarm and Amazon EC2 Container Service.
We’ll also compare Kubernetes with each of the other tools.

http://kubernetes.io/

Docker Swarm
Docker v1.12 includes a swarm mode in Docker Engine for natively managing a cluster of Docker Engines called a warm.
The Docker CLI can be used to create a swarm, deploy application services to a swarm, and manage swarm behavior.
This is backwards compatible with the previous Docker Swarm that was available as a stand-alone option prior to v1.12.
While both options are still available, Docker recommends using the Swarm mode going forward.

The comparison in this section will mostly apply to either of the options available for Docker Swarm. Swarm uses the
standard Docker API, so normal Docker run commands can be used to launch containers and Swarm will take care of
selecting an appropriate host to run the container on.

Other tools that use the Docker API, e.g. Docker Compose, worked with the stand-alone Swarm without any changes,
but are still not integrated with the Swarm mode.

Each host in a Swarm cluster runs a Swarm agent and one host runs a Swarm manager. The manager will orchestrate and
schedule containers on the hosts. Similar to other container orchestration tools, a Discovery service will find and add new
hosts to the cluster. Third-party tools like Consul, ZooKeeper, etcd are required to ensure high availability and failover to
a secondary Swarm manager. The table below gives a detailed comparison of Swarm features and compares them with
Kubernetes.

The major components in a Kubernetes cluster are:

Swarm Node

Swarm
Manager

Token

Docker
API

Docker
API

Client

Discovery

Scheduler

Docker Hub

Swarm Node

Swarm Node

Docker Daemon

C C C C

•	 Pods – Kubernetes deploys and schedules containers in groups called pods. A pod will typically include 1 to 5
containers that collaborate to provide a service.

•	 Flat Networking Space – The default network model in Kubernetes is flat and permits all pods to talk to each
other. Containers in the same pod share an IP and can communicate using ports on the localhost address.

•	 Labels – Labels are key-value pairs attached to objects and can be used to search and update multiple objects
as a single set.

•	 Services – Services are endpoints that can be addressed by name and can be connected to pods using label
selectors. The service will automatically round-robin requests between the pods. Kubernetes will set up a DNS
server for the cluster that watches for new services and allows them to be addressed by name.

•	 Replication Controllers – Replication controllers are the way to instantiate pods in Kubernetes. They control
and monitor the number of running pods for a service, improving fault tolerance.

3

The figure below shows Kubernetes clusters in a multi-master configuration. Each cluster runs the Master node services
in a highly available manner. Similar to the OpenStack example above, both clusters have to be configured for security,
backup and Single Sign On services. In a production environment, the clusters will have to be continuously monitored for
health and performance, and updated regularly with patches and new versions of Kubernetes.

Compare Kubernetes v/s Docker Swarm

Type’s of Workloads Cloud Native applications Cloud Native applications

Application Definition A combination of Pods, Replication Control-
lers, Replica Sets, Services and Deployments.
As explained in the overview above, a pod is a
group of co-located containers; the atomic unit
of deployment.
Pods do not express dependencies among indi-
vidual containers within them.
Containers in a single Pod are guaranteed to
run on a single Kubernetes node.

Apps defined in Docker Compose can be
deployed on a Swarm cluster.

Application Scalability
constructs

Each application tier is defined as a pod and
can be scaled when managed by a Deployment
or Replication Controller. The scaling can be
manual or automated.

Docker CLI can be used to scale the
number of services in the swarm.
$docker service scale <SERVICE-
ID>=<NUMBER-OF-TASKS>

https://docs.docker.com/engine/swarm/
swarm-tutorial/scale-service/

High Availability Pods are distributed among Worker Nodes.
Services also HA by detecting unhealthy pods
and removing them.

Containers are distributed among Swarm
Nodes.

The Swarm manager is responsible for the
entire cluster and manages the resources of
multiple Docker hosts at scale.

To ensure the Swarm manager is highly
available, a single primary manager in-
stance and multiple replica instances must
be created. Requests issued on a replica
are automatically proxied to the primary
manager.

If a primary manager fails, tools like Consul,
ZooKeeper or etcd will pick a replica as the
new manager.

Continued on following page.

4

http://kubernetes.io/
https://docs.docker.com/engine/swarm/swarm-tutorial/scale-service/
https://docs.docker.com/engine/swarm/swarm-tutorial/scale-service/
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/design/architecture.md
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/%23manager-nodes
https://docs.docker.com/swarm/multi-manager-setup/%23high-availability-in-docker-swarm
https://docs.docker.com/swarm/multi-manager-setup/%23high-availability-in-docker-swarm

Type’s of Workloads Cloud Native applications Cloud Native applications

Load Balancing Pods are exposed through a Service, which can
be a load balancing.

The swarm manager uses ingress load
balancing to expose the services you want
to make available externally to the swarm.
The swarm manager can automatically
assign the service a Published Port or users
can configure a Published Port for the
service.

External components, such as cloud load
balancers, can access the service on the
Published Port of any node in the cluster
whether or not the node is currently run-
ning the task for the service. All nodes in
the swarm route ingress connections to a
running task instance.

Swarm mode has an internal DNS compo-
nent that automatically assigns each service
in the swarm a DNS entry. The swarm
manager uses internal load balancing to
distribute requests among services within
the cluster based upon the DNS name of
the service.

Auto-scaling for the
Application

Auto-scaling using a simple number-of-pods
target is defined declaratively with the API ex-
posed by Replication Controllers.

CPU-utilization-per-pod target is available as of
v1.1 in the Scale subresource. Other targets are
on the roadmap.

For each service, you can declare the
number of tasks you want to run. When you
scale up or down, the swarm manager au-
tomatically adapts by adding or removing
tasks to maintain the desired state.

Rolling Application
Upgrades and Rollback

“Deployment” model supports strategies, but
one similar to Mesos is planned for the future.

Health checks test for liveness i.e. is app re-
sponsive.

At rollout time, you can apply service
updates to nodes incrementally. The swarm
manager lets you control the delay be-
tween service deployment to different sets
of nodes. If anything goes wrong, you can
roll-back a task to a previous version of the
service.

Logging and
monitoring

Health checks of two kinds: liveness (is app re-
sponsive) and readiness (is app responsive, but
busy preparing and not yet able to serve)

Logging: Container logs shipped to Elastic-
search/Kibana (ELK) service deployed in cluster

Resource usage monitoring: Heapster/Grafana/
Influx service deployed in cluster

Logging/monitoring add-ons are part of official
project

Sysdig Cloud integration

Logging: Can ship logs to ELK deployed in
cluster

Monitoring: Can use external tools, e.g.
Riemann

Continued on following page.

5

https://kubernetes.io/docs/user-guide/services/
https://kubernetes.io/docs/user-guide/services/%23type-loadbalancer
https://kubernetes.io/docs/user-guide/replication-controller/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
https://kubernetes.io/docs/user-guide/deployments/
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/proposals/deployment.md%23deployment-strategies
http://kubernetes.io/v1.1/docs/user-guide/production-pods.html%23liveness-and-readiness-probes-aka-health-checks
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/%23apply-rolling-updates-to-a-service
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/%23apply-rolling-updates-to-a-service
https://kubernetes.io/docs/user-guide/production-pods/%23liveness-and-readiness-probes-aka-health-checks
https://blog.docker.com/2016/03/realtime-cluster-monitoring-docker-swarm-riemann/
http://kubernetes.io/docs/user-guide/monitoring/
https://sysdig.com/blog/monitoring-kubernetes-with-sysdig-cloud/
https://clusterhq.com/2016/01/12/a-single-node-elk-flocker/
https://clusterhq.com/2016/01/12/a-single-node-elk-flocker/
https://blog.docker.com/2016/03/realtime-cluster-monitoring-docker-swarm-riemann/

Type’s of Workloads Cloud Native applications Cloud Native applications

Storage Two storage APIs:

The first provides abstractions for individual
storage backends (e.g. NFS, AWS EBS, ceph,-
flocker).

The second provides an abstraction for a stor-
age resource request (e.g. 8 Gb), which can be
fulfilled with different storage backends.
Modifying the storage resource used by the
Docker daemon on a cluster node requires tem-
porarily removing the node from the cluster.

Docker Engine and Swarm support mount-
ing volumes into a container.
A volume is stored locally by default. Vol-
ume plugins (e.g.flocker) mount volumes
on networked storage (e.g., AWS EBS,
Cinder, Ceph).

Networking The networking model lets any pod can commu-
nicate with other pods and with any service.

The model requires two networks (one for pods,
the other for services)

Neither network is assumed to be (or needs to
be) reachable from outside the cluster.

The most common way of meeting this require-
ment is to deploy an overlay network on the
cluster nodes.

You can specify an overlay network for your
services. The swarm manager automatical-
ly assigns addresses to the containers on
the overlay network when it initializes or
updates the application.

Service Discovery Pods discover services using intra-cluster DNS Swarm manager node assigns each service
a unique DNS name and load balances
running containers. You can query every
container running in the swarm through a
DNS server embedded in the swarm.

Performance and
scalability

With the release of 1.2, Kubernetes now sup-
ports 1000-node clusters. Kubernetes scalability
is benchmarked against the following Service
Level Objectives (SLOs):

API responsiveness: 99% of all API calls return in
less than 1s .

Pod startup time: 99% of pods and their con-
tainers (with pre-pulled images) start within 5s.

According to the Swarm website, Swarm
is production ready and tested to scale
up to one thousand (1,000) nodes and
fifty thousand (50,000) containers with no
performance degradation in spinning up in-
cremental containers onto the node cluster.

Check out these other blogs on the topic-

https://blog.docker.com/2015/11/scale-
testing-docker-swarm-30000-containers/

https://medium.com/on-docker/evaluat-
ing-container-platforms-at-scale-5e7b44d-
93f2c#.sblte6chl

6

http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/networking.md
https://docs.docker.com/engine/swarm/networking/%23use-dns-round-robin-for-a-service
https://docs.docker.com/engine/swarm/networking/%23use-dns-round-robin-for-a-service
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm%23/features
https://www.docker.com/products/docker-swarm%23/features
https://www.docker.com/products/docker-swarm%23/features
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c%23.sblte6chl
https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c%23.sblte6chl
https://medium.com/on-docker/evaluating-container-platforms-at-scale-5e7b44d93f2c%23.sblte6chl

Apache Mesos (+Marathon)
Apache Mesos is an open-source cluster manager designed to scale to very large clusters, from hundreds to thousands
of hosts. Mesos supports diverse kinds of workloads such as Hadoop tasks, cloud native applications etc. The architec-
ture of Mesos is designed around high-availability and resilience.

The major components in a Mesos cluster are:

Hadoop
Scheduler

Mesos Master Standby
Master

Standby
Master

Mesos Agent

Task

MPI
Scheduler

Hadoop
Executor

Mesos Agent

Task

MPI
Executor

Task

Hadoop
Executor

ZooKeeper
Quorum

Task

MPI
Executor

Mesos Agent

•	 Mesos Agent Nodes – Responsible for actually running tasks. All agents submit a list of their available resources
to the master.

•	 Mesos Master – The master is responsible for sending tasks to the agents. It maintains a list of available resourc-
es and makes “offers” of them to frameworks e.g. Hadoop. The master decides how many resources to offer
based on an allocation strategy. There will typically be stand-by master instances to take over in case of a failure.

•	 ZooKeeper – Used in elections and for looking up address of current master. Multiple instances of ZooKeeper
are run to ensure availability and handle failures.

•	 Frameworks – Frameworks co-ordinate with the master to schedule tasks onto agent nodes. Frameworks are
composed of two parts-

	 • the executor process runs on the agents and takes care of running the tasks and
	 • the scheduler registers with the master and selects which resources to use based on offers from the master.

There may be multiple frameworks running on a Mesos cluster for different kinds of task. Users wishing to submit jobs
interact with frameworks rather than directly with Mesos.

In the figure above, a Mesos cluster is running alongside the Marathon, framework as the scheduler. The Marathon
scheduler uses ZooKeeper to locate the current Mesos master which it will submit tasks to. Both the Marathon scheduler
and the Mesos master have standbys ready to start work should the current master become unavailable.

Marathon, created by Mesosphere, is designed to start, monitor and scale long-running applications, including cloud
native apps. Clients interact with Marathon through a REST API. Other features include support for health checks and an
event stream that can be used to integrate with load-balancers or for analyzing metrics.

Credit: http://mesos.apache.org/documentation/latest/architecture/

7

http://mesos.apache.org/
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
http://mesos.apache.org/documentation/latest/architecture/

Compare Kubernetes v/s Mesos(+Marathon)

Kubernetes Mesos

Types of Workloads Cloud Native applications Support for diverse kinds of workloads such
as big data, cloud native apps etc.

Application Definition A combination of Pods, Replication Control-
lers, Replica Sets, Services and Deployments.
As explained in the overview above, a pod is a
group of co-located containers; the atomic unit
of deployment.
Pods do not express dependencies among indi-
vidual containers within them.
Containers in a single Pod are guaranteed to
run on a single Kubernetes node.

“Application Group” models dependencies
as a tree of groups. Components are start-
ed in dependency order.

Colocation of group’s containers on same
Mesos slave is not supported.

A Pod abstraction is on roadmap, but not
yet available.

Application Scalability
constructs

Each application tier is defined as a pod and
can be scaled when managed by a Deployment
or Replication Controller. The scaling can be
manual or automated.

Possible to scale an individual group, its
dependents in the tree are also scaled.

High Availability Pods are distributed among Worker Nodes.

Services also HA by detecting unhealthy pods
and removing them.

Applications are distributed among Slave
Nodes.

Load Balancing Pods are exposed through a Service, which can
be a load balancer.

Application can be reached via Me-
sos-DNS, which can act as a rudimentary
load balancer. There are other options like
1- Minuteman https://github.com/dcos/
minuteman and Marathon load balancer
https://mesosphere.com/blog/2015/12/04/
dcos-marathon-lb/

Auto-scaling for the
Application

Auto-scaling using a simple number-of-pods
target is defined declaratively with the API ex-
posed by Replication Controllers.

CPU-utilization-per-pod target is available as of
v1.1 in the Scale subresource. Other targets are
on the roadmap.

Load-sensitive autoscaling available as a
proof-of-concept application.

Rate-sensitive autoscaling available for
Mesosphere’s enterprise customers.

Rich metric-based scaling policy.

Rolling Application
Upgrades and Rollback

“Deployment” model supports strategies, but
one similar to Mesos is planned for the future.

Health checks test for liveness i.e. is app re-
sponsive.

“Rolling restarts” model uses applica-
tion-defined minimum Health Capacity
(ratio of nodes serving new/old application)

“Health check” hooks consume a “health”
API provided by the application itself.

Continued on following page.

8

https://mesosphere.github.io/marathon/docs/application-groups.html
http://stackoverflow.com/questions/34327050/provision-to-start-group-of-applications-on-same-mesos-slave/34330658%2334330658
http://stackoverflow.com/questions/34327050/provision-to-start-group-of-applications-on-same-mesos-slave/34330658%2334330658
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/design/architecture.md
http://mesos.apache.org/documentation/latest/architecture/
http://mesos.apache.org/documentation/latest/architecture/
https://kubernetes.io/docs/user-guide/services/
https://kubernetes.io/docs/user-guide/services/%23type-loadbalancer
http://mesosphere.github.io/mesos-dns/
http://mesosphere.github.io/mesos-dns/
http://mesosphere.github.io/mesos-dns/docs/naming.html%23notes
http://mesosphere.github.io/mesos-dns/docs/naming.html%23notes
https://github.com/dcos/minuteman
https://mesosphere.com/blog/2015/12/04/dcos-marathon-lb/
https://mesosphere.com/blog/2015/12/04/dcos-marathon-lb/
https://kubernetes.io/docs/user-guide/replication-controller/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
https://github.com/mesosphere/marathon-autoscale
https://github.com/mesosphere/marathon-autoscale
https://github.com/mesosphere/marathon-autoscale
https://github.com/mesosphere/marathon-lb-autoscale
https://docs.mesosphere.com/1.7/usage/tutorials/autoscaling/cpu-memory/
https://kubernetes.io/docs/user-guide/deployments/
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/proposals/deployment.md%23deployment-strategies
https://kubernetes.io/docs/user-guide/production-pods/%23liveness-and-readiness-probes-aka-health-checks
https://mesosphere.github.io/marathon/docs/deployments.html%23rolling-restarts
https://mesosphere.github.io/marathon/docs/health-checks.html

Kubernetes Mesos

Logging and
monitoring

Health checks of two kinds: liveness (is app re-
sponsive) and readiness (is app responsive, but
busy preparing and not yet able to serve).

Logging: Container logs shipped to Elastic-
search/Kibana (ELK) service deployed in cluster.

Resource usage monitoring: Heapster/Grafana/
Influx service deployed in cluster.

Logging/monitoring add-ons are part of official
project .

Sysdig Cloud integration

Logging: Can use ELK

Monitoring: Can use external tools

Storage Two storage APIs:

The first provides abstractions for individual
storage backends (e.g. NFS, AWS EBS, Ceph,
Flocker).

The second provides an abstraction for a stor-
age resource request (e.g. 8 GB), which can be
fulfilled with different storage backends.

Modifying the storage resource used by the
Docker daemon on a cluster node requires tem-
porarily removing the node from the cluster

A Marathon container can use persistent
volumes, but such volumes are local to the
node where they are created, so the con-
tainer must always run on that node.

An experimental flocker integration sup-
ports persistent volumes that are not local
to one node.

Networking The networking model lets any pod can commu-
nicate with other pods and with any service.

The model requires two networks (one for pods,
the other for services) .

Neither network is assumed to be (or needs to
be) reachable from outside the cluster.
The most common way of meeting this require-
ment is to deploy an overlay network on the
cluster nodes.

Marathon’s Docker integration facilitates
mapping container ports to host ports,
which are a limited resource.

Mesos also has Ip-per-container support
https://mesosphere.com/blog/2015/12/02/
ip-per-container-mesos/

Service Discovery Pods discover services using intra-cluster DNS. Containers can discover services using DNS
or reverse proxy.

Performance and
scalability

With the release of 1.2, Kubernetes now sup-
ports 1000-node clusters. Kubernetes scalability
is benchmarked against the following Service
Level Objectives (SLOs):

API responsiveness: 99% of all API calls return in
less than 1s

Pod startup time: 99% of pods and their con-
tainers (with pre-pulled images) start within 5s.

Among the other tools, Mesos has been
used more often for larger clusters. Twitter
has a tweaked version of Mesos spanning
more than 80,000 nodes.
Mesos can run LXC or Docker containers
directly from the Marathon framework or
it can fire up Kubernetes or Docker Swarm
(the Docker-branded container manager)
and let them do it.

9

https://kubernetes.io/docs/user-guide/production-pods/%23liveness-and-readiness-probes-aka-health-checks
http://kubernetes.io/docs/getting-started-guides/logging-elasticsearch/
http://kubernetes.io/docs/user-guide/monitoring/
https://sysdig.com/blog/monitoring-kubernetes-with-sysdig-cloud/
http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
https://mesosphere.github.io/marathon/docs/persistent-volumes.html
https://mesosphere.github.io/marathon/docs/persistent-volumes.html
https://docs.clusterhq.com/en/latest/mesos-integration/index.html
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/networking.md
https://mesosphere.com/blog/2015/12/02/ip-per-container-mesos/
https://mesosphere.com/blog/2015/12/02/ip-per-container-mesos/
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html

AWS EC2 Container Service (ECS)
According to the AWS ECS webpage, Amazon EC2 Container Service (ECS) is a highly scalable, high performance
container management service that supports Docker containers and allows you to easily run applications on a managed
cluster of Amazon EC2 instances. Amazon ECS eliminates the need for you to install, operate, and scale your own cluster
management infrastructure.

Note that the containers managed by ECS will be exclusively run on AWS EC2 instances. There’s no support for contain-
ers to run on infrastructure outside of EC2, whether physical infrastructure or other clouds. In addition, EC2 instances
must be created prior to requesting ECS to bring up containers on those instances. This is a big difference compared to
other container orchestration solutions, which do not lock the user into a particular infrastructure provider. The advan-
tage, of course, is the ability to work with all the other AWS services like Elastic Load Balancers, CloudTrail, CloudWatch
etc.

Container
Scheduler

Container Scheduler
(Amazon ECR, Docker Hub,

Self-hosted Registry)

Task Definition

Task Definition

Service Description

AWS Region

Services

AWS

VPC

ECS Agent

Tasks

Container Instances

ECS Agent

Tasks

Container Instances

AZ1

AZ2

Amazon ECS Cluster

Credit: http://docs.aws.amazon.com/AmazonECS/latest/developerguide

10

https://aws.amazon.com/ecs/

The major components in Amazon ECS are:
•	 Task Definition: The task definition is a text file, in JSON format, describing the containers that together form an

application. Task definitions specify various parameters for the application e.g. container image repositories, ports,
storage etc.

•	 Tasks and Scheduler: A task is an instance of a task definition, created at runtime on a container instance within the
cluster. The task scheduler is responsible for placing tasks on container instances.

•	 Service: A service is a group of tasks that are created and maintained as instances of a task definition. The schedul-
er maintains the desired count of tasks in the service. A service can optionally run behind a load balancer. The load
balancer distributes traffic across the tasks that are associated with the service.

•	 Cluster: A cluster is a logical grouping of EC2 instances on which ECS tasks are run.
•	 Container Agent: The container agent runs on each EC2 instance within an ECS cluster. The agent sends teleme-

try data about the instance’s tasks and resource utilization to Amazon ECS. It will also start and stop tasks based on
requests from ECS.

•	 Image Repository: Amazon ECS downloads container images from container registries, which may exist within or
outside of AWS, such as a accessible private Docker registry or Docker Hub.

Compare Kubernetes v/s ECS

Kubernetes Amazon ECS

Deployment
Infrastructure

Physical H/W, Virtual Infra or public clouds. Only on AWS EC2 instances.

Application Definition A combination of Pods, Replication Control-
lers, Replica Sets, Services and Deployments.
As explained in the overview above, a pod is a
group of co-located containers; the atomic unit
of deployment.

Pods do not express dependencies among indi-
vidual containers within them.

Containers in a single Pod are guaranteed to
run on a single Kubernetes node.

Application can span multiple task defini-
tions by combining related containers into
their own task definitions, each represent-
ing a single component.

Task definitions group the containers that
are used for a common purpose, and sepa-
rate the different components into multiple
task definitions.

Application Scalability
constructs

Each application tier is defined as a pod and
can be scaled when managed by a Deployment
or Replication Controller. The scaling can be
manual or automated.

Task instances can be scaled by updating
their task definitions or the underlying EC2
instances can be scaled based on monitor-
ing alerts.

High Availability Pods are distributed among Worker Nodes.
Services also HA by detecting unhealthy pods
and removing them.

By using AWS Availability zones and
defining placement policies in the Service
requirements.

Load Balancing Pods are exposed through a Service, which can
be a load balancer.

Amazon ECS can optionally be configured
to use Elastic Load Balancing to distribute
traffic evenly across the tasks in a service.
Elastic Load Balancing provides two types
of load balancers: Application Load Bal-
ancers and Classic Load Balancers, and
Amazon ECS services can use either type of
load balancer.

Continued on following page.

11

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_run_task.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/scheduling_tasks.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_services.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_clusters.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_Console_Repositories.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/design/architecture.md
http://kubernetes.io/v1.1/docs/user-guide/services.html
http://kubernetes.io/v1.1/docs/user-guide/services.html%23type-loadbalancer
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html

Kubernetes Amazon ECS

Auto-scaling for the
Application

Auto-scaling using a simple number-of-pods
target is defined declaratively with the API ex-
posed by Replication Controllers.

CPU-utilization-per-pod target is available as of
v1.1 in the Scale subresource. Other targets are
on the roadmap.

Amazon ECS can optionally be configured
to use Service Auto Scaling to adjust its
desired count up or down in response to
CloudWatch alarms. Service Auto Scaling is
available in all regions that support Ama-
zon ECS.

Service Auto Scaling can also be used in
conjunction with Auto Scaling for Amazon
EC2 instances to scale the cluster, and the
service, as a response to demand.

Tutorial: Scaling Container Instances with
CloudWatch Alarms

Rolling Application
Upgrades and Rollback

“Deployment” model supports strategies, but
one similar to Mesos is planned for the future.

Health checks test for liveness i.e. is app re-
sponsive.

Update a running service to change the
number of tasks that are maintained by
a service or to change the task definition
used by the tasks.

A updated Docker image of the application
can be deployed to the service by creat-
ing a new task definition with that image.
The service scheduler uses the minimum
healthy percent and maximum percent
parameters, in the service’s deployment
configuration, to determine the deploy-
ment strategy.

Logging and
monitoring

Health checks of two kinds: liveness (is app re-
sponsive) and readiness (is app responsive, but
busy preparing and not yet able to serve).

Logging: Container logs shipped to Elastic-
search/Kibana (ELK) service deployed in cluster.

Resource usage monitoring: Heapster/Grafana/
Influx service deployed in cluster.

Logging/monitoring add-ons are part of official
project.

Sysdig Cloud integration

AWS CloudWatch can be used to store
and analyze logs from the task instance
and Docker daemon. AWS CloudTrail can
be used to record all ECS API calls. The
recorded information includes the identity
of the API caller, the time of the API call,
the source IP address of the API caller, the
request parameters, and the response ele-
ments returned by Amazon ECS.

Amazon ECS provides monitoring capabil-
ities for containers and clusters to report
average and aggregate CPU and memory
utilization of running tasks as grouped by
Task Definition, Service, or Cluster through
Amazon CloudWatch. CloudWatch alarms
can also send alerts when containers or
clusters need to scale up or down.

Continued on following page.

12

http://kubernetes.io/v1.1/docs/user-guide/replication-controller.html%E2%80%9D%20with%20%E2%80%9Chttps://kubernetes.io/docs/user-guide/replication-controller/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
http://kubernetes.io/docs/user-guide/horizontal-pod-autoscaling/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_alarm_autoscaling.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_alarm_autoscaling.html
https://kubernetes.io/docs/user-guide/deployments/
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/proposals/deployment.md%23deployment-strategies
https://kubernetes.io/docs/user-guide/production-pods/%23liveness-and-readiness-probes-aka-health-checks
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service.html
https://kubernetes.io/docs/user-guide/production-pods/%23liveness-and-readiness-probes-aka-health-checks
http://kubernetes.io/docs/getting-started-guides/logging-elasticsearch/
http://kubernetes.io/docs/user-guide/monitoring/
https://sysdig.com/blog/monitoring-kubernetes-with-sysdig-cloud/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/logging-using-cloudtrail.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html

Kubernetes Amazon ECS

Storage Two storage APIs:

The first provides abstractions for individual
storage backends (e.g. NFS, AWS EBS, Ceph,
Flocker).

The second provides an abstraction for a stor-
age resource request (e.g. 8 Gb), which can be
fulfilled with different storage backends.

Modifying the storage resource used by the
Docker daemon on a cluster node requires tem-
porarily removing the node from the cluster.

Specify data volumes in Amazon ECS task
definitions to provide persistent data vol-
umes for use with containers, or to define
an empty, nonpersistent data volume and
mount it on multiple containers on the
same container instance, or to share de-
fined data volumes at different locations on
different containers on the same container
instance.

There’s also an option to use Amazon Elas-
tic File System (EFS) to persist data from
ECS containers.

Networking The networking model (https://github.com/ku-
bernetes/community/blob/master/contributors/
design-proposals/networking.md) lets any pod
can communicate with other pods and with any
service.

The model requires two networks (one for pods,
the other for services).

Neither network is assumed to be (or needs to
be) reachable from outside the cluster.

The most common way of meeting this require-
ment is to deploy an overlay network on the
cluster nodes.

Amazon ECS strongly recommends launch-
ing your container instances inside a VPC
to gain more control over the network and
offers more extensive configuration capa-
bilities. For more information, see Amazon
EC2 and Amazon Virtual Private Cloud
in the Amazon EC2 User Guide for Linux
Instances.

The task definition also has parameters for
network settings

Service Discovery Pods discover services using intra-cluster DNS ECS recently started providing some basic
service discovery or you can use Consul.

Here is an article that lays out a reference
architecture for service discovery.

It is worth repeating that Amazon ECS is designed for, and provides maximum value, when integrated with Other AWS
Services such as Elastic Load Balancing, Elastic Block Store, Virtual Private Cloud, IAM, and CloudTrail. This will likely
provide a complete solution for running a wide range of containerized applications or services. On the other hand, Ku-
bernetes is not restricted to run on any particular kind of infrastructure or a specific provider. In fact, Kubernetes can also
be easily run on AWS EC2.

11

http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html
https://aws.amazon.com/blogs/compute/using-amazon-efs-to-persist-data-from-amazon-ecs-containers/
https://aws.amazon.com/blogs/compute/using-amazon-efs-to-persist-data-from-amazon-ecs-containers/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/networking.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/networking.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/networking.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/networking.md
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html%23container_definition_network
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html%23container_definition_network
https://aws.amazon.com/blogs/aws/powerful-aws-platform-features-now-for-containers/
https://aws.amazon.com/blogs/aws/powerful-aws-platform-features-now-for-containers/
https://aws.amazon.com/blogs/compute/service-discovery-via-consul-with-amazon-ecs/
https://aws.amazon.com/blogs/compute/service-discovery-an-amazon-ecs-reference-architecture/
https://aws.amazon.com/blogs/compute/service-discovery-an-amazon-ecs-reference-architecture/
http://kubernetes.io/docs/getting-started-guides/aws/

Summary
The comparisons above will show that Kubernetes is a powerful and more mature framework than the other tools. It
allows a true abstraction layer across private and public clouds, across bare metal and virtualized environments. Kuber-
netes makes it easier to build and run modern cloud-native apps, since it offers native support for features like service
discovery, load balancing and application lifecycle management.

As powerful and easy as Kubernetes is, it is still a non-trivial effort to install Kubernetes in a production environment that
meets enterprise-readiness requirements. This typically includes single-sign-on, role-based access control, multi-tenancy
etc. There’s the critical need to have constant and effective monitoring of Kubernetes clusters to make sure it is available
and healthy. The DevOps teams will also have to keep the Kubernetes clusters updated with security and other patches,
and upgrading it regularly to keep up with new releases. Most application and DevOps teams would rather offload these
tasks and just focus on using Kubernetes to develop awesome new applications, using micro-services and all the other
goodness of container technology. This is where a managed solution can help.

Platform9 Managed Kubernetes enables a multi-cloud vision by providing a SaaS-managed offering for Kubernetes. The
“managed” experience means Platform9 handles all the nitty gritty
details of Kubernetes deployment and configuration, then ongoing monitoring, troubleshooting and upgrades. Software
developers can focus on using the Kubernetes APIs to build cloud-native applications and DevOps teams can focus on
realizing a multi-cloud strategy for their organization. What’s more, enterprises also get all the enterprise-readiness fea-
tures such as integration with their choice of persistent storage and networking technology, RBAC support, SSO integra-
tion, multi-tenancy and isolation.

Platform9’s managed offering includes a high SLA. We provide fully automated deployment and configuration, 24/7
health monitoring and alerting, along with zero-touch updates and upgrades. The Kubernetes environment is delivered
in an enterprise-ready state that is applicable whether the clusters are deployed on bare-metal servers, in OpenStack
environments or across public clouds like AWS, GCE, Azure.

To experience Managed Kubernetes, please check out the Platform9 Sandbox: https://platform9.com/sandbox.

14

https://platform9.com/sandbox

