
Saving Time and
Money by Migrating
Off of Microsoft BizTalk
Server to Peregrine
Connect’s Neuron ESB

Peregrine Connect’s Application Integration and Web Service Platform:
A Real-World Client Example of Valuable Time and Cost Savings

Table of Contents

Why common application integration and web service composition
approaches fail	 3	

Common integration challenges encountered today	 4	

A real-world client comparison of Peregrine Connect’s Neuron ESB vs.
Microsoft BizTalk Server	 6	

	 Improved overall performance of web service composition solution	 7	

	 Streamlined solution implementation, adoption and maintenance	 8	

Reduced solution implementation and ownership costs by nearly 25 times	 9

Peregrine Connect’s Neuron ESB-based solution implementation key features	 10	

Topic hierarchy	 10	

Business processes	 12	

Exception management	 14	

Deployment architecture	 14	

Choosing an application integration and web service platform	 15	

Key distinguishing features	 16

Information technology (IT) departments in many

organizations today are struggling with how to

effectively and efficiently integrate applications for

delivering transformational systems that drive business

innovation. Even simple application integration changes

that should take only a few hours or days to implement

may take weeks or months due to overly complex,

resource-intensive, outdated and custom-coded, point-

to-point solutions or antiquated middleware solutions.

An in-depth analysis of a real-world pilot performed

for a client in the education industry conclusively

demonstrates the overwhelming benefits of Peregrine

Connect’s Neuron Enterprise Service Bus (ESB)-

based application integration solution for web service

composition over an existing Microsoft BizTalk Server

implementation.

The reliance on homegrown, point-to-point integration

solutions engages an organization’s IT in a perpetual

cycle of redundant and excessive efforts expended to

develop and sustain web service application interfaces.

As an organization grows and evolves in striving to

successfully compete in the rapidly changing and

increasingly service-intensive marketplace, it will reach

a breaking point in trying to operate based on such

ineffective integration solutions. Trying to afford the

time and cost, including the sophisticated and excessive

developer resources, required to implement, maintain

and support these connections will become highly

impractical over time.

This white paper examines some of the most burning

business and technical application integration

challenges facing IT departments today and how

Peregrine Connect middleware can effectively and

efficiently help to address those challenges. Peregrine

Connect’s Neuron ESB is an application integration

and web service platform for organizations of all

sizes and industries committed to using the Microsoft

.NET platform. Built entirely on Microsoft .NET

Framework technology, Peregrine Connect facilitates

an organization’s ability to efficiently integrate, adapt,

extend and scale .NET-based web service applications

for overall improved operational performance, agility

and cost savings. Providing both real-time and long-

running business process orchestration and workflow

capabilities, Peregrine Connect drives business

innovation that is resilient to disruption.

A pilot performed for a client in the education industry

serves as the basis for demonstrating the overall

business value and key benefits of a Neuron ESB-

based integration solution implementation. The pilot

performed for the client specifically compares the

Peregrine Connect Neuron ESB implementation to the

organization’s existing Microsoft BizTalk Server and

custom .NET C# Windows Communication Foundation

(WCF) implementations.

Why common application
integration and web
service composition
approaches fail

The conclusive benefits of the
Neuron ESB Implementation of
the client’s service composition
solution include:

• Reduced software licensing costs by

approximately 12 times

• Reduced annual support costs by 20

times

• Improved overall performance of

web service composition solution

• Streamlined solution implementation

and maintenance

• Reduced solution implementation

costs

An effective and efficient application integration

solution strategy for web service composition is

considered a cornerstone in successfully enabling

technology innovation and business growth for

organizations across many industries seeking to

successfully compete into the future. Providing a

360-degree view of the various operational processes

and supporting information systems that serve an

organization and its external customers and business

partners is therefore a primary business challenge for IT.

Another pressing business challenge concerns the

need to enable automated, event-based operations

with near real-time visibility of systems rather than

relying on delayed batch processing between systems.

Successfully enabling an automated, event-based

business operation hinges on effective and efficient

master data management in which a master system of

record in conjunction with other related information

systems are capable of reflecting any changes made

in near real-time. An automated, event-based business

operation effectively allows an organization to:

•	Improve responsiveness for taking advantage of new

business opportunities and addressing continually

changing business needs and challenges in

maintaining a competitive advantage.

•	Increase operational efficiency and productivity to in

turn realize valuable time and cost savings.

From a technical standpoint, the key challenges facing

IT departments for adopting web services, application

integration and business process automation platforms

revolve around the need to leverage plentiful and more

cost-effective, standard .NET developer resources

(see figure 1). IT organizations struggle with trying to

both find and afford the sophisticated and expensive,

integration middleware product specialists with the

skills required to write very complex integration

solutions.

At the same time, organizations are seeking to minimize

the number of developer resources required overall.

Other developer resource-related challenges concern

the:

•	Acquisition of skilled resources for designing complex

infrastructure capabilities, requiring plumbing and

infrastructure; advanced coding; complex patterns;

and monitoring, reporting and instrumentation

•	Additional costs associated with acquiring skilled

resources

•	Development effort extended for months or years,

increasing the time before a solution can be brought

to market

•	Higher costs of maintaining and extending

infrastructure capabilities over the long term

•	Inefficiencies in integrating, maintaining, adapting

and scaling complex or custom-coded, point-to-point

integration solutions

•	Loss of technical knowledge capital and expertise

with the developers who originally wrote the custom-

coded integration solutions

Common integration
challenges encountered
today

Figure 1: Peregrine Connect’s implementations require minimal training

Beyond developer resource challenges, IT departments

struggle with how to improve efficiency and

productivity for handling the various application

integration scenarios and types of programming

interfaces. Developers also find it difficult to maintain

their focus on addressing actual business needs and

challenges due to valuable time and effort spent having

to custom build integrated operating systems with

point-to-point solutions. In other cases, IT may realize

that it purchased the wrong product for efficiently

scaling and supporting an organization’s web service

operations to accommodate growth and changing

business needs.

Considering the complex mix of business and technical

challenges associated with web service composition

and application integration, IT departments seek a

tool that can effectively align with business objectives

while enabling an efficient and productive developer

experience at the same time. Neuron ESB was therefore

chosen for the pilot due to its focus on agility, ease

of use and operational efficiency for use with the

Microsoft platform.

Peregrine Connect’s Neuron ESB provides businesses

with real-time reliable messaging, business process

orchestration, and application and web service

integration options for truly distributed ESB solutions

deployed in the cloud, on premise or in various hybrid

topologies. Using Neuron ESB offers a secure, cost-

effective and productive way of exposing and extending

enterprise systems and services into new composable

business capabilities.

“Planners and product managers that need an ESB to provide
their deliverables should consider Neuron ESB because of its
demonstrated ease of deployment and ease of use, as well as
its ability to be used successfully by a broad set of resources,
such as .NET developers, rather than more highly skilled (and
more costly) Java developers.”

—Jess Thompson, Research Vice President, Gartner

A real-world pilot and training performed for a client in

the education industry overwhelmingly demonstrates

the benefits of a Neuron ESB-based solution

implementation for web service composition. The

pilot objectives for comparing the Peregrine Connect

implementation to the client organization’s existing

Microsoft BizTalk Server and custom .NET C# WCF

implementations were to:

•	Design a Neuron ESB-based solution that replicates

the functionality of the existing Microsoft BizTalk

Server-based solution

•	Design a Neuron ESB-based solution that also

replicates the custom .NET C# WCF-based solution

the client previously built in an attempt to replace the

existing Microsoft BizTalk Server-based solution

•	Develop the Neuron ESB-based solution to include:

–	A hierarchical, topic-based messaging topology for

web service routing

–	The organization’s existing WCF-based web services

–	Peregrine Connect-hosted web services

–	Dynamic routing capabilities

–	Scatter-Gather pattern for service composition

–	Exception management framework

–	Neuron ESB environmental variables

•	Demonstrate XCOPY deployment in an ASP.NET web

application framework from one isolated environment

(quality assurance) to another (production)

•	Conduct real-world performance testing, comparing

the Neuron ESB-based solution against both the

existing Microsoft BizTalk Server-based and custom

.NET C# WCF-based solutions

•	Provide advanced training for the organization’s IT

team regarding the use of Neuron ESB to develop

complex business solutions

To accomplish these objectives, the organization’s

“retrieve college process” web service operation was

migrated onto Peregrine Connect’s hosting environment

to effectively compare and contrast the solutions in

terms of overall performance, maintainability and

complexity. The retrieve college process web service

was originally hosted in Microsoft BizTalk Server and

then subsequently migrated to a custom .NET C#

WCF-based solution due to performance issues. This

particular web service operation was chosen for the

pilot because it represented a typical web service built

on the client organization’s existing Microsoft BizTalk

Server’s infrastructure.

The retrieve college process web service operation

essentially provides a consolidated view of an

online or ground school through the consumption

of six backend web services. When an information

request is submitted containing a school identifier,

the service returns basic school, degree, contact list,

office hours and online community information. The

existing version of the service implements the Scatter-

Gather pattern in Microsoft BizTalk Server to dispatch

information requests to the multiple backend services

and then sends an aggregated response back to the

client system users.

The primary objective of the pilot was to demonstrate

improved performance of the web service

solution using Neuron ESB in terms of request-

response time versus the existing Microsoft BizTalk

Server implementation while closely matching

the performance of the custom .NET C# WCF

implementation. The secondary objectives were to

use Neuron ESB to provide a much simpler, easier

to use, maintain, and more cost-effective application

integration and web service solution. At the conclusion

of the pilot, Neuron ESB successfully achieved both

the primary and secondary objectives as evidenced

by actual supporting metrics (see following section

for metrics).

A real-world client
comparison of Peregrine
Connect’s Neuron ESB vs.
Microsoft BizTalk Server

8.5 X Faster
The Peregrine Connect’s Neuron ESB-based

solution was approximately 8.5 times faster than the

Microsoft BizTalk Server-based solution and nearly

3.5 times faster than the custom .NET C# WCF-based

solution.

Improved overall performance of
web service composition solution
Peregrine Connect’s Neuron ESB-based solution

implementation of the retrieve college process web

service significantly outperformed both of the client’s

existing Microsoft BizTalk Server-based and custom

.NET C# WCF-based solutions in terms of average

response times (see figure 2).

Neuron ESB’s architecture is designed for more effective request-response, low-latency and high throughput

scenarios. To summarize, the overall key reasons why the Neuron ESB-based integration solution performed

better in comparison to the client organization’s existing Microsoft BizTalk Server-based and custom .NET C#

WCF-based solutions are:

•	Microsoft BizTalk Server routes all messages through

its proprietary MessageBox database, creating

undesirable latency in request-response messaging

scenarios. The architecture also imposes severe

limits on concurrency scale-out.

•	Web service capability within Microsoft BizTalk

Server is enabled through the use of its adapters.

These adapters, however, do not submit the received

requests directly to the MessageBox. The adapters

instead use proxy messages, which are routed

through Microsoft Internet Information Services

(IIS) before they are submitted to the MessageBox

database.

•	Microsoft BizTalk Server does not provide a native

hosting environment for web services. All web service

calls must be proxied through IIS and COM interop.

•	Microsoft BizTalk Server Orchestrations are stateful

by design. Therefore at various points or shapes

within the execution of a Microsoft BizTalk Server

Orchestration, the current state of variables and

messages are stored to the MessageBox database,

causing more overhead.

•	WCF-based web services that use data contracts

generally require deserialization and serialization

within the service, contributing to longer response

times. However, note that additional analysis of WCF

services is needed to confirm whether serialization

alone is the reason for longer response times.

•	An optional stateless business processing

environment, which reduces latency and increases

concurrency through asynchronous configuration

options.

•	The elimination of an intermediate durable

MessageBox-like database in the middle of all

message interaction, which reduces latency even

further while increasing concurrency.

•	Direct interaction with existing web service and

application integration adapters, which also helps

reduce latency and increase concurrency.

•	A native hosting environment for web services.

• Leveraging the asynchronous features within a

Neuron ESB business process, coupled with the

native Neuron ESB infrastructure services, the

significant reduction in the request-response time

was achieved over both the Microsoft BizTalk

Server-based and custom .NET C# WCF-based

solutions. Neuron ESB was effectively able to

asynchronously call each of the six web services in

parallel rather than in a sequential manner.

Solution Ground School
Peregrine Connect ESB-based solution
Existing custom .NET C# WCF-based solution
Existing Microsoft BizTalk Server-based solution

350 ms
1200 ms
3000 ms

Figure 2: Average response times

Streamlined solution
implementation, adoption and
maintenance
The time that it took to implement the Peregrine

Connect’s Neuron ESB-based integration solution

for the client’s retrieve college process web service

solution took less than three days. The strategy applied

for effectively streamlining the implementation time

of the Neuron ESB-based solution leveraged the use

of any existing artifacts from the client organization’s

Microsoft BizTalk Server-based solution while helping

to minimize the need for custom coding.

To facilitate the streamlined Peregrine Connect

implementation, Extensible Stylesheet Language

Transformations (XSLTs) in the existing Microsoft

BizTalk Server solution were used with some

modifications. In specific, the modifications involved

the consolidation of three XSLTs into one and required

less than a few hours of effort to complete.

The existing Microsoft BizTalk Server-based integration

solution implementation for the retrieve college process

web service is an example of a Scatter-Gather pattern.

A single web service call into Microsoft BizTalk Server

invokes six subsequent calls to backend services,

and the responses are then aggregated into a single

response and returned to the client. This pattern was

easily implemented as a Neuron ESB business process

as shown earlier (see figure 4).

If a member from the client’s IT development team

who was more familiar with the XSLTs had completed

the consolidation effort, even more implementation

time savings may have potentially been realized.

Additionally, to help minimize the need for any custom

code development for the Neuron ESB implementation,

the existing Scatter-Gather pattern sample provided

within the Neuron ESB software development kit and

documentation was used.

The client’s existing Microsoft BizTalk Server-based

integration solution implementation consisted of more

than 100 orchestration shapes for choreographing

the interaction with the six backend web services (see

figure 3). The simplicity of the Peregrine Connect’s

Neuron ESB-based integration solution implementation

was enabled through the creation of a Neuron ESB

Business Process consisting of just 20 steps (see figure 4).

For the purpose of this comparison, the Neuron ESB

Business Process Steps are virtually equivalent to

Microsoft BizTalk Server Orchestration Shapes.

Figure 4: Peregrine Connect’s Streamlined Neuron ESB-based

integration solution (consisting of approximately 20 Neuron ESB

Process Steps)

In effect, Peregrine Connect’s highly streamlined Neuron ESB-based integration solution demonstrated a

dramatic, 80-plus percent reduction in the number of configuration steps required.

Figure 3: Existing Microsoft BizTalk Server-based integration solution

(consisting of more than 100 BizTalk Orchestration Shapes)

Peregrine Connect only requires the use of standard

.NET resources and, combined with its ease of

implementation and use, provides for dramatically

reduced costs compared to other middleware

products in the marketplace. For every dollar of

Peregrine Connect purchased, only $1 or less is sold

in implementation consulting services. The majority

of Peregrine Connect customers do not outsource

implementation services. Instead, they perform the

implementation themselves with existing Microsoft

.NET development resources (see Associated Press

case study as an example). In contrast, for every dollar

spent on most middleware products in the marketplace,

an amount ranging from approximately $5 to $10 is

commonly spent on implementation services.

Specific to the pilot performed for the education

industry client, the Peregrine Connect’s Neuron

ESB-based integration solution offered dramatic

savings in software and recurring maintenance costs

in comparison to the client organization’s existing

Microsoft BizTalk Server-based and custom .NET C#

WCF-based solutions (see figure 5).

The Peregrine Connect pilot solution implementation demonstrated a dramatic
reduction in the client’s total costs—from more than $1.5 million to less than $100,000.

Existing Microsoft BizTalk Server-based solution cost in production environment
(for software and recurring maintenance)

Pilot Neuron ESB-based solution cost
(for software and recurring maintenance)

Estimated Neuron ESB-based solution cost in production environment
(for software and recurring maintenance)

8 Microsoft BizTalk Servers + 2 SQL Servers

1 Neuron ESB Server + 1 SQL Server

1 Neuron ESB Server + 1 SQL Server

Production

Pilot

Production

Annual Support	

Annual Support	

Annual Support	

= 32 CPUs of Microsoft BizTalk Server

= 2 CPUs of Neuron ESB

= 4 CPUs of Neuron ESB

= 8 CPUs of Microsoft SQL Server

= 2 CPUs of Microsoft SQL Server

= 2 CPUs of Microsoft SQL Server

= $1.440MM

= $50K

= $100K

= $50K

= $16K

= $16K

= $500K

= $15K

= $25K

Figure 5: Solution implementation and ownership cost savings

Solution implementation costs
Microsoft BizTalk Server = 2 months of development and performance tuning = $64K
Neuron ESB = 3 days of development and performance tuning = $4.8K

Reduce software licensing costs by approximately 12 times

Reduced annual support costs by 20 times

Overall in terms of product, services and operations,

Peregrine Connect’s Neuron ESB typically costs several

factors less than Microsoft BizTalk Server, IBM, Oracle,

Tibco and WebMethods (see figure 6). In the case of

web service composition solutions, the cost savings

obtained using Neuron ESB can be even greater. For

this specific customer solution, the savings would be

significantly greater:

Peregrine Connect’s
Neuron ESB-based
solution implementation
key features
In performing the pilot for the client organization,

several Peregrine Connect’s Neuron ESB features were

utilized. A high-level description of the key features,

including how they were utilized in the solution

implementation, is provided in terms of:

•	Topic hierarchy

•	Business processes

•	Exception management

•	Deployment architecture

Topic hierarchy
Peregrine Connect and Neuron ESB provide a powerful

hierarchical, topic-based publish and subscribe

messaging system in which publishers can label each

message with a topic name rather than addressing it to

specific recipients. The Neuron ESB messaging system

can alternatively route messages between parties

(publishers and subscribers), adapters (technology

“bridges”) and service endpoints.

Neuron’s topic model is composed of a subtopic

hierarchy that can more intuitively reflect either an

organization’s structure or business requirements.

However, Neuron ESB is unique in the industry in that it

allows the business to determine the quality of service

(QoS) attributes at the topic level (configurable within

the Neuron ESB Explorer), and many topics of various

QoS attributes can exist side by side. By providing this

level of flexibility, organizations do not have to worry

about changing their specific business requirements

to meet the limitations imposed by other competing

products.

Some of the critical QoS
attributes include:

•	Throttling

•	Encryption

•	Auditing

•	Transport

•	Transactions

•	Durability

•	Compression

Figure 6: Peregrine Connect’s Neuron ESB overall costs up to 7x less

than the competition

Transport is a critical QoS selection, as it affects

many aspects that businesses may require, including

transaction and durability support. Transport selection

also provides attributes like ordered messaging,

guaranteed delivery, once-only delivery, scale out,

latency and performance.

The lack of this level of flexibility within Microsoft

BizTalk Server is one of the primary reasons that it falls

short in web service-based scenarios. Every request

processed and routed by Microsoft BizTalk Server

MUST go through a database within a two-phased

commit transaction, even if it is a web service request-

response type of messaging pattern.

In the case of a web service request-response scenario,

Peregrine Connect’s Neuron ESB can be configured to

use in-memory routing. Neuron ESB provides several

configurable transports for topics, including:

•	TCP	 • MSMQ	 • Peer

•	RabbitMQ	 • Named pipes

The Neuron ESB messaging system manages the

process of sending a message to all eligible recipients

that have expressed interest in receiving messages

on the assigned topic. This form of asynchronous

messaging solution architecture is far more scalable

than point-to-point messaging alternatives. Once

the message sender or publisher creates the original

message, they can then leave the task of servicing

the recipients or subscribers to the messaging

infrastructure.

Topic-based publish and subscribe messaging systems

generally share several common attributes, which may

include:

•	Subscribers subscribe to one or more topics and only

receive messages that are of interest.

•	Publishers have no knowledge about the subscribers,

including how many there are or where they live.

•	Subscribers have no knowledge about the publishers,

including how many there are or where they live.

•	New systems, including publishers or subscribers,

are either easily added or removed from the flow of

information without the need for coding changes.

This type of messaging architecture sends messages

only to those applications interested in receiving

them without any knowledge of the identities of the

receivers. What’s unique about Neuron ESB’s Topic

implementation is that the underlying network transport

and quality of service attributes can be individually

configured at the topic level.

An initial step in performing the pilot was to define a

topic hierarchy that resembled the client organization’s

existing web service composition solution. The client

had approximately 50 web services hosted in either its

Microsoft BizTalk Server-based solution or its custom

.NET C# WCF-based solution.

Rather than reviewing all the different
services, the following representational
hierarchy was implemented based on
discussions with the client:

The Actor.School.Ground.* and Actor.School.

Online.* sets of topics were effectively used

in implementing the retrieve college process

web service with the Peregrine Connect’s

Neuron ESB-based integration solution.

•	Actor

•	Actor.School

•	Actor.School.Ground

•	Actor.School.Ground.

GeneralInformation

•	Actor.School.Ground.Newsfeeds

•	Actor.School.Ground.Config

•	Actor.School.Ground.GetListItems

•	Actor.School.Online

•	Actor.School.Online.

GeneralInformation

•	Actor.School.Online.Newsfeeds

•	Actor.School.Online.Config

•	Actor.School.Online.GetListItems

•	Actor.Faculty

•	Actor.Student

•	Actor.Staff

•	Partners

•	Technical

•	Technical.Authentication

•	Technical.Authorization

In contrast, Neuron ESB allows users to flexibly

configure its messaging fabric specific to the

business need.

Peregrine Connect offers a flexible, easy-to-use,

Business Process Designer with a drag-and-drop

interface that ships with 44 configurable process

steps that do virtually everything—from calling a

service, supporting parallel processing, and updating

a database or queue to detecting duplicate messages

and parsing a Microsoft Excel file within Peregrine

Connect’s Neuron ESB Explorer (see figure 7).

Developers can build custom, reusable process steps

that can be registered in the Process Steps library and

added to any custom business process.

The Neuron ESB Business Process Designer ships

with many .NET developer-centric user enhancements

designed to improve developer productivity. Developers

can perform real-time debugging at design time,

so they can quickly test, diagnose and fix business

processes during development. The business process

debugging experience within Neuron ESB is similar to

the experience provided by Microsoft Visual Studio for

debugging .NET applications (see figure 8).

Additionally, the Neuron ESB Business Process

Designer offers powerful extensibility features.

Developers can write custom process steps,

configurable through the Neuron ESB Explorer that

allow other developers to reuse their capabilities.

Neuron ESB also ships with programming language

editors exposed through process steps, allowing users

to write either VB.NET, C#, or Javascript directly within

a process—without having to use Microsoft Visual

Studio or compiling anything into assemblies (see

figure 9).

Business processes

Figure 7: Peregrine Connect’s Neuron ESB Business Process Designer

Figure 8: .NET debugging experience within Neuron ESB provides

developers the ability to set breakpoints within processes and inspect

messages, variables and state in real-time during development

Figure 9: C# language editor with toolbar formatting options and full

IntelliSense for the developer—nothing to ever compile

Using the Neuron ESB Business Process designer,

developers can also:

•	Set breakpoints on process steps and within language

editors

•	Use function keys F5 and F11

•	Work using dock-able windows

•	Disable process steps

•	Create folders and categorize processes

•	Perform cut/copy/paste process steps

•	Zoom, print and save processes as images

Microsoft BizTalk Server does not ship with anything

close to the capability, functionality, performance,

extensibility and developer usability encapsulated

within the Peregrine Connect’s Neuron ESB Business

Process engine and designer.

Neuron ESB-based solutions can be developed in a

fraction of the time that it would take to build and scale

out comparable solutions with Microsoft BizTalk Server

while performing five times to 20 times faster.

Consequently, the Microsoft BizTalk Server

Orchestration engine was designed for stateful, long-

running processes, which focus on the execution of

external .NET developer-provided assemblies. Because

of this, it introduces significant overhead, usability and

testing issues. Most capabilities have to be provided

by the .NET developer since they are not provided by

Microsoft BizTalk Server Orchestration.

Although not used as part of this pilot, Peregrine

Connect and Neuron ESB also offer workflow and

orchestration capabilities, supporting a user-friendly

graphical design time environment, event tracking,

long-running transactions, custom correlation, fault

tolerance and distributed runtime environments (see

figures 11 and 12).

Peregrine Connect’s Neuron ESB business processes

are ideal for basic ESB patterns, such as Validate,

Enrich, Transform and Operate or VETO; Scatter-

Gather or Simple/Dynamic Service Aggregation and

Composition. The Neuron ESB Business Process engine

capabilities are targeted for real-time web service

environments, where performance, agility and time

to market are driving factors. Whereas, Neuron ESB

Workflow and Orchestration are targeted for those use

cases where resiliency, tracking and fault tolerance are

primary business drivers.

Figure 11: Neuron ESB Workflow Designer for creating long-running,

persistent, fault-tolerant business processes

Figure 10: Peregrine Connect’s Neuron ESB .NET language editor -

Offering full Visual Studio experience for writing .NET code

Figure 12: Graphical event tracking during Neuron ESB workflows

allows users to see entire process flow state and health, including

values assigned to all variables

Exceptions should always be managed within Peregrine

Connect’s Neuron ESB-based integration solution. An

Exception Process Step that encapsulates all other steps

is generally recommended for all processes. A catch

block, an alternative block of code in C#, is therefore

executed for exception management. Within the catch

block of the Exception Process Step, one or more of

several actions may be taken including, for instance:

•	Use the Code Process Step to enrich the caught

exception with business-specific and actionable

information related to the cause of the error as well

as the actual System.Exception object and then report

the information to an external tracking system.

•	Use the Audit Process Step, setting its action property

to “failure,” which will automatically write the failed

message, its context and exception information to the

Peregrine Connect database.

Peregrine Connect’s Neuron ESB-based solution

implementation of the retrieve college process

web service composition follows this overall

recommendation. The reusable exception management

pattern can also be used to add features such as custom

message management, custom error logging and email

notifications.

A reusable and composable exception management

pattern was not available within the existing Microsoft

BizTalk Server-based solution.

Neuron ESB enables streamlined deployment by

encapsulating all elements of the integration solution

into a simple configuration file. Deployment groups

and environmental variables are used to assign the

correct values for use at runtime per the deployment

environment (see figure 13). There are no assemblies

to manage or put into the global assembly cache.

Complex database synchronization issues and the need

for custom scripts and Microsoft Windows Installer or

custom installer packages are therefore eliminated.

In effect, Peregrine Connect and Neuron ESB simplify

what can otherwise become a very cumbersome

deployment process for developers and administrators

alike. Precious time may then be reallocated back to the

development of the business solution, rather than to its

deployment.

The education industry client organization utilizes four

existing web service application environments for:

•	Development

•	Integration testing

•	User acceptance testing

•	Production

Facilitating the deployment of a Neuron ESB-based

integration solution across these various environments

would essentially require the creation of four

deployment groups:

•	Development

•	Integration

•	Regression

•	Production

For each deployment group, a set of environment

variables is defined to allow for environment-specific

settings to be captured once and reused as the solution

progresses from development through production.

Examples of environment variables may include:

•	Neuron ESB Audit Database Connection String

•	URLs of service endpoints (or partial URLs, containing

just the server name and port)

Exception management

Deployment architecture

Microsoft BizTalk Server does not support the

concept of custom Orchestration extensions or

activities.

Figure 13: Peregrine Connect’s Neuron ESB runtime architecture

3rd Party Topic Host Providers (Windows, Rabbit MZ, etc...)

Machine A
Custom Application

Party (client api)

Machine B
Custom Application

Party (client api)

Neuron ESB Workflow Host

Workflow Endpoint

Topic (RabbitMQ, Peer, MSMQ)

Topic (TCP, Named Pipes)

Topic (MSMQ)

Neuron ESB Runtime Server

Processes Processes Workflow Endpoint

Party

Workflow
Workflow

Workflow

Adapter/Service Endpoint

Publisher (Party)
Processes

HTTP
TCP

Azure

Adapter
• Custom
• FTP
• File
• POP3
• SMTP
• OCBC
• MQ
• MSMQ
• CRM
• SP
• Azure
• ...

Adapter/Service Endpoint

Publisher (Party)
Processes

HTTP
TCP
IPC IPC

Azure

Adapter
• Custom
• FTP
• File
• POP3
• SMTP
• OCBC
• MQ
• MSMQ
• CRM
• SP
• Azure
• ...

The Neuron ESB application integration and web

service platform effectively and efficiently extends the

Microsoft .NET platform to provide real-time reliability,

durable messaging, application integration, business

processing and web service management. Expressly

built with the .NET developer user experience in mind,

Peregrine Connect and Neuron ESB offer a highly

intuitive and easy-to-use user interface.

Choosing an application
integration and web
service composition
platform

 “We evaluated Peregrine Connect’s Neuron ESB against other service
buses, and Peregrine Connect came out as the clear leader. It wasn’t
a sledgehammer for a nail, as was the case with some of the other
offerings we looked at. Peregrine Connect fit the bill perfectly and is
now orchestrating all content processed by AP.”

		 — Vince Tripodi, Vice President, Development, Associated Press

 “What requires hours with competitive alternatives, takes a matter of
minutes with Peregrine Connect. We went from a months-long product
release process to one that now takes mere weeks.”

		 — Lester Henderson, Senior Architect, Compassion International

 “We selected Peregrine Connect as the platform on which to build out
our business transformation initiatives. Peregrine Connect had the
capabilities and performance we needed to meet a number of our
workflow and orchestration challenges. We can’t get that from Microsoft
BizTalk Server’s orchestration engine.”

		 — Mitch Bledsoe, Vice President, Information Technology,
	 Assurant Specialty Property

Peregrine Connect’s Neuron ESB application integration

and web service platform effectively and efficiently

extends the Microsoft .NET platform to provide

real-time reliability, durable messaging, application

integration, business processing and web service

management. Expressly built with the .NET developer

user experience in mind, Peregrine Connect offers a

highly intuitive and easy-to-use user interface.

•	Streamlined configuration and ease of use: Drives

events to and from other systems based on user-

defined criteria and features an easy-to-use toolset

and intuitive, hierarchical, topic-based publish and

subscribe messaging system with configurable

transport protocols, including MSMQ, RabbitMQ, TCP,

named pipes and peer.

•	Codeless connections to Salesforce.com, Microsoft
Dynamics CRM, NetSuite and more: Enables more

agile, effective integration for faster and simpler

project deployment with codeless connections to

ODBC, POP3, Microsoft Exchange, SQL, Microsoft

SharePoint, SPTF/FTP/FTPS, IBM MQSeries, Apache

ActiveMQ and more.

•	Distributed, hierarchical, topic-based message
system: Easily message-enables existing .NET

applications using Peregrine Connect’s Neuron

ESB distributable, event-based client application

programming interface (API). Peregrine Connect’s

client API allows existing .NET applications to scale

and participate in an event-driven architecture.

•	Simplified service hosting and mediation: Easily

manages, extends, hosts and integrates all web

service (SOAP/REST) endpoints in a single place

while adding uniform security, policy, reporting, and

management options to existing services.

•	Real-time business process design: Quickly develops

rules and decisions that execute in conjunction with

business information in real-time for more than 40

out-of-the-box business activities, without the need

for complex workflow tools, other technologies or

specialized skills.

•	Step-by-step process debugging: Allows process

designers to quickly test, diagnose and fix business

processes during development with similar design

time debugging support as .NET apps using Microsoft

Visual Studio.

•	Extendable business processes with language
editors: Expands business processes with C#, VB.NET

or JavaScript within the Neuron ESB Business

Process Designer without the complexity of managing

or deploying .NET assemblies.

•	Workflow and orchestration: Provides a user-friendly

graphical design time environment, event tracking,

long-running transactions, custom correlation, fault

tolerance and distributed runtime environments

targeted for those use cases where resiliency, tracking

and fault tolerance are primary business drivers.

Key distinguishing
features of Peregrine
Connect

About the Author

About Peregrine Connect’s Neuron ESB

Marty Wasznicky, General Manager, Peregrine Connect
Marty has more than 24 years of experience in the software development industry. He joined Neudesic after serving

for six years as a Regional Program Manager in the Connected Systems Division at Microsoft. His responsibilities

there included building out the Microsoft BizTalk Server product integration business, managing a team of SOA/ESB/

BPM field specialists, building strategic partner alliances, and collaborating on architecture and features for Microsoft

distributed technologies. Marty also owned the development and architecture of the Microsoft Enterprise Service Bus

Toolkit.

An enterprise service bus (ESB), Neuron ESB is an application integration and web service platform built entirely on

Microsoft .NET. Neuron ESB-based integration solutions enable the delivery of real-time, event-driven communication

with streamlined and cost-effective implementation, maintenance and support.

For more information and to download a free 30-day evaluation copy of Peregrine Connect,

www.peregrineconnect.com

If your organization wants to …
•	Deploy application and web service integration solutions faster and more efficiently

•	Increase productivity without increasing its developer base

•	Realize considerable savings on deployment and associated software, hardware, maintenance, upgrade and

support costs

… then it’s time to explore how Peregrine Connect may benefit your organization.
To arrange a meeting with a Peregrine Connect representative, please contact Marty Wasznicky, at (310) 980-5495 or

Marty.Wasznicky@peregrineconnect.com

