
Serious 
Jamstack.
Headless CMS and Jamstack 
for enterprise projects

By Ondrej Polesny



2 Introduction.

Believe it or not, the term Jamstack has been with us for over six years now. But it’s 

only the last year or two when developers really started to take Jamstack as their 

serious choice when building websites.

In this book, I don’t want to explain the Jamstack basics and why we, developers, 

like to build pre-generated websites. If you’re reading these lines, you probably 

already know the Jamstack benefits, and you’re considering it for your next project. 

Here, I want to focus on the obstacles we always need to work around when building 

anything beyond a simple presentation website. I aim to show you that Jamstack is 

ready for enterprise projects.

Ondrej Polesny. 
Developer Evangelist, Kentico Kontent

Introduction.



3 Introduction.

Let’s start by outlining the advanced scenarios 
and their potential problems. The chapters in 
this book correspond to the items in this list:

1 Performance....................................................................................................................................................................... 4
As your project grows beyond a few hundred pages/content items, you start 

experiencing longer builds that affect content’s time to production.

2 Server, serverless, security............................................................................................................................12
Every serious Jamstack site needs a server; there is always some dynamic 

functionality that requires server-side handling and brings security concerns.

3 Search.....................................................................................................................................................................................15
On top of server processing, search queries also need advanced 

evaluation logic and a snapshot of all your current content.

4 Headless CMS...............................................................................................................................................................19
For a simple presentation website, you can use pretty much any headless CMS  

or even Markdown files. As your site grows, you’ll need a reliable source of content.

5 Multiple languages.................................................................................................................................................28
English, Spanish, German, those are the basics. But oftentimes 

you need to work with local dialects and regional sites.

6 Authentication & gated content..............................................................................................................32
Learn how to identify your visitors and allow them to see gated content.

7 Personalization & A/B testing.....................................................................................................................39
These are the typical server-side features to evaluate what 

content brings you the most conversions.

8 E-commerce....................................................................................................................................................................48
Find out how to handle shopping carts, orders, 

payments, and other e-commerce features.



1 Performance.

One of the key attributes why you choose 
Jamstack is the performance. But as time goes 
by and your project grows, you’ll encounter two  
aspects of Jamstack sites that require your attention:

•	Build and deploy time
•	Hosting

It’s not a question of “if,” but “when” both 
of these become a bottleneck.



5 1 Performance.

Build and deploy time.

Many developers don’t see build time as an important metric. When a change is 

published, it doesn’t matter if it takes a minute or two before it’s visible on the front end. 

While that is true in most cases, the problem increases as the content grows.

According to a benchmark published on CSS Tricks that only worked with markdown files, 

it takes Gatsby over 70s to build a site with 8k pages. That includes only plain text with 

no images and does not include the time required to fetch data from a data source and 

convert them to GraphQL nodes.

Internally, we have experienced builds taking way over 15 minutes for about 3k 

content items. It highly depends on the site’s implementation, data complexity, images 

processing, etc.

The same behavior occurs for other frameworks like Next.js, Nuxt, Jekyll, and so on.

So why is it a problem?

Content previews
If your site is truly static and does not allow editors to see server-rendered previews, 

you need to build it every time an editor wants to see their content in the website frame. 

Something that traditional websites let them see instantly. Obviously, they hate to wait 

a few minutes for it.

Scheduled publishing
Once editors are happy with their changes, they don’t just hit “Publish” and walk 

away. They always expect to know if and when it gets published. They check the 

page again to see if they haven’t made some horrible mistake like forgetting to publish 

some related content. It becomes very frustrating for them to wait a long (or worse, 

unpredictable) length of time to see it published.

https://css-tricks.com/comparing-static-site-generator-build-times/


6 1 Performance.

Long and stacking builds
The previews are sometimes solved by hooking a headless CMS webhook into a build 

platform that rebuilds the site or its part on every content change. The problem is, 

there can be a lot of changes. Even if you rebuild only after a content item is moved 

to a special workflow step or is published, when there are multiple editors working on 

a single project, the build server will be busy building the site 24/7. That’s not something 

developers, editors, or the project owner’s wallet like to see.

Solutions
Depending on your chosen framework, there are ways to make builds behave even for 

projects with large amounts of content.

Server-rendered content previews

Advanced static site generators like Next.js and Nuxt allow you to render a specific 

page on demand.

Next.js achieves this by using serverless functions and the logic is integrated into 

the platform. If you choose a web host that fully supports Next.js, there are no 

extra steps for you, as the functions are extracted and deployed automatically 

during  next build .

Editor

All content
(draft)

SPA

+ Preview API 
token

Website 
implementation

Headless
CMS

Build server Static site

Visitor

Menu
items

Docs
archive

Landing
pages

Blog
posts



7 1 Performance.

NuxtJS lets you switch the server-side pre-rendering to classic SPA mode and 

build the preview site on the client. You’ll probably end up deploying  

two sites—production and preview—to protect your preview API keys, but the 

rest is automatic.

Use native platform

If your project does not need advanced features available in JS-based frameworks, 

like front-end bundles with client-side functionalities, you can leverage the benefits 

of compiled programming languages with static site generators like Hugo (Go) or 

Jekyll (Ruby). According to the same benchmark mentioned earlier, Hugo is about 

15-30x faster than JS-based frameworks.

Don’t build everything

But the best solution is to simply not build everything every time. Here the solution is 

highly dependent on the used framework.

Gatsby

If you’re using Gatsby and have it hosted on Gatsby Cloud, you can use 

incremental builds. Provided your headless CMS features a first-class integration 

with Gatsby, you can hook the content editing notifications to Gatsby Cloud.

Whenever a content editor changes a piece of content, Gatsby Cloud receives 

the information and rebuilds only affected pages. The incremental build takes 

only a few seconds and works for both preview and production builds.

2.
Webhook

3.
Incremental

build
Preview site

1.
Content 
change

Editor

Headless
CMS

Gatsby Cloud Public site

Visitor

Menu
items

Docs
archive

Landing
pages

Blog
posts

https://nuxtjs.org/docs/2.x/features/live-preview
https://www.gatsbyjs.com/products/cloud/integrations/
https://www.gatsbyjs.com/products/cloud/integrations/


8 1 Performance.

NuxtJS

NuxtJS allows you to separate code and content builds. First, it builds the site and 

then crawls it starting from the homepage to find all internal links. This way, it 

incrementally pre-builds all pages during a single deployment. If you only change 

content, you don’t need to touch the built website (i.e., the bundle), only recrawl it 

and regenerate the static pages. That’s what NuxtJS does for you automatically.

Next.js

With Next.js, you don’t have to build all the pages during the initial build. For each 

page, you can choose how it should be handled:

•	 Static generation (SSG) 

Page will be generated at build time.

•	 Client-side rendering (CSR) 

Page will be rendered during the initial load on the client.

•	 Server-side rendering (SSR) 

Page will be handled by Node server or serverless function for each request.

•	 Incremental static regeneration (ISR) 

Request to a page in this mode will return an already generated and cached page. 

If it doesn’t exist or has already become stale, Next.js will rebuild it and cache it.

So if your website has 20k pages, you can pre-build (SSG) the most visited 1k. 

Pages that show live data can be set to server-side rendering (SSR), and the rest 

will be prepared and cached on demand (ISR). The concept is very similar to lazy 

loaded images on long pages where your browser downloads only the images in 

your viewport and keeps lazy loading the rest as you scroll.

Menu
items

Landing
pages

Docs
archive

Blog
posts

Categories

Website 
implementation

Build server

Visitor

/blog/…
/archive/…

/home
/google-campaign
…

Serverless
function

Headless
CMS

Static site

Cache



9 1 Performance.

Other platforms and Netlify’s DPR

If you’re using other platforms, you can still use on-demand-built pages with 

Netlify’s distributed persistent rendering. The concept is pretty much like simplified 

incremental static regeneration of Next.js. You pre-build only the critical part of 

your website and leave the majority of pages to be rendered by on-demand builders. 

Those are essentially just serverless functions that do the same magic as your regular 

build, only on a page level and when needed.

This is still a new initiative, and as of August 2021, they support Next.js via the Essential 

Next.js plugin and 11ty, but the community will likely add support for more SSGs soon.

Watch for client-side JS bundle size

When using modern JS frameworks, your visitors download the first page and 

asynchronously fetch the client-side JS bundle that, once fetched, rehydrates the 

page. While that makes every subsequent page load incredibly fast and can even 

enable your site to work offline, it has the potential to hurt your Google Web Vitals 

results and thus SEO. Try to optimize the bundle size by including only necessary 

packages, keep the core framework packages updated, and follow its best practices.

https://docs.netlify.com/configure-builds/on-demand-builders
https://www.netlify.com/blog/2021/04/22/next.js-on-netlify-now-with-support-for-on-demand-builders-and-distributed-persistent-rendering/
https://www.youtube.com/watch?v=bENDCw9aLV0
https://web.dev/vitals/


10 1 Performance.

Hosting.

People often have their preferred host that they use for all Jamstack sites they create, 

or they default to one based on the used platform. If your site uses Gatsby, you might 

host it on Gatsby Cloud, if it’s a Next.js site, you might use Vercel, and so on. However, 

even with all of the above configured identically, different hosting providers may 

provide performance benefits over others.

•	 Build time

Many hosts offer to handle the complete deployment process of your site including 

build. However, the build time on each host highly depends on the used architecture. 

When I tested a single Next.js site on multiple hosts, the build times were ranging 

from 40 seconds to 3.5 minutes. If your site is large and you need to decide which 

pages will be pre-built and which pages will be server-rendered, the build time 

becomes a very important metric.

•	 CDN locations

Every Jamstack provider advertises that they provide a CDN. Jamstack sites are 

fast by default. Even hosting them on a standard server halfway around the world 

produces an acceptable visitor experience, but with larger sites, and especially 

e-commerce, the CDN size and performance start to matter.

For example, Netlify states that their Edge network features 6 points of presence. 

They allow you to switch to a high-performance edge with 27 points for a custom 

price. Vercel claims to use 15 regions, Layer0 offers 31 edge locations and 85+ for 

custom plans, and Cloudflare states that they use 194 data centers across the globe.

Also, pay attention to the resources that are not served from the deployed site. 

Depending on the site’s implementation, it can be images, videos, external scripts, 

and so on.

•	 Pricing

Every host offers a limited free tier that is always capable of hosting small to 

medium websites. For serious commercial sites that require guaranteed uptime 

and are maintained by teams rather than a single person, you will need to switch 

https://kontent.ai/blog/comparison-of-jamstack-hosting-platforms-for-next-js?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://www.netlify.com/pricing/
https://vercel.com/docs/edge-network/regions
https://www.layer0.co/pricing
https://www.cloudflare.com/plans/2/


11 1 Performance.

to a paid plan. They start as low as $10/month and go up quickly. The typical 

differentiators are:

•	 Team members

•	 Bandwidth allowance

•	 Support

•	 SLA

•	 CDN network quality

•	 Build performance (prioritization)

Check out pricing matrixes of the most used providers:

•	 AWS

•	 Azure

•	 Gatsby Cloud

•	 Layer0

•	 Netlify

•	 Vercel

•	 Support

Setting up Jamstack sites is usually very simple and you likely won’t need to 

interact with support. However, with larger sites, you’ll likely want an SLA and 

a guaranteed response time. This aspect is very easy to check—just ask a specific 

question, see what responses you get, and how quickly you get them.

•	 Reliability

All providers host the Jamstack sites on a CDN, so even if one node fails, the traffic 

gets rerouted to a different node, and the site remains operational. That alone 

greatly improves the reliability of site hosting. To verify each provider’s reliability, 

you can check their status pages:

•	 AWS

•	 Azure

•	 Cloudflare

•	 Gatsby Cloud

•	 Layer0

•	 Netlify

•	 Vercel

https://aws.amazon.com/amplify/pricing/
https://azure.microsoft.com/en-us/pricing/details/app-service/static/#pricing
https://www.gatsbyjs.com/pricing/
https://www.layer0.co/pricing
https://www.netlify.com/pricing/
https://vercel.com/pricing
https://status.aws.amazon.com/
https://status.azure.com/en-us/status
https://www.cloudflarestatus.com/
https://status.gatsbyjs.com/
https://status.layer0.co/
https://www.netlifystatus.com/
https://www.vercel-status.com/


2 Server, 
serverless, 
security.

Any large Jamstack site needs a server. There’s always 
something that needs dynamic server-side processing, 
like form submissions, personalization, search, and so 
on. The big difference is that, in the past, we hosted 
the website as a bundle on two or more servers behind 
a load balancer. With Jamstack, every piece of dynamic 
functionality is single-purpose, self-sustainable, and 
therefore can be hosted and scaled separately.



13 2 Server, serverless, security.

Server Serverless

	+ Easy logging and debugging

	− Has access to all valuable resources 
like databases, CRMs, payment 
gateways, and other systems that 
are necessary for the company 
processes

	− Access keys stored within the server

	− Scalable as a whole (scale-up, 
scale-out)

	− Deployed as a whole

	− More attractive to hackers as it 
covers a larger surface area and 
represents a single entry point into 
company data

	+ Has very limited access to only 
a single resource

	+ Access keys stored outside

	+ Scalable separately

	+ Deployed separately

	− More complicated logging across 
multiple functions

	− Harder debugging

Load balancer

Forms
handler

Search
handler

Integration
#1

Integration
#2

CDN

AppApp

Forms
handler

Search
handler

Integration
#1

Integration
#2

Forms
handler

Search
handler

Integration
#1

Integration
#2

With servers, we were used to looking at resources specifications and possible scaling 

options. With serverless, the scaling is handled automatically, but there are other 

aspects we need to keep an eye on:

•	 Cold starts

When a serverless function doesn’t process any request for some time, it gets 

suspended. It’s a way to save resources. Depending on the provider, it takes about 

5–30 minutes before a function “goes to sleep.”

https://mikhail.io/serverless/coldstarts/big3/


14 2 Server, serverless, security.

What’s more important is how long it takes the function to wake up. According 

to the conducted tests in the linked article, it’s <1s for AWS, 0.5-2s for GCP, and 

unimpressive 5s for Azure provided you’re running the functions on Linux.

Note: Cloudflare claims their workers are always on and don’t suffer from cold starts.

Note: Netlify and Vercel use AWS for serverless functions.

•	 Maximum execution time

Because serverless functions are single-purpose blocks of code, you should not 

experience problems with overtime. But if you’re using them to solve other tasks like 

data transformations or integrations with other systems, their typical limit of 10-20s 

per run can become a bottleneck.

•	 Memory limit

Similar to the previous point, serverless functions are limited in their usage of server 

memory. Typically it’s around 1GB of memory and it should be sufficient for the vast 

majority of use cases.

•	 Pricing

You typically pay for the number of executions, but higher tiers may give you a more 

generous execution time or memory limit.

•	 Used platform

Most often, functions are deployed separately. On Azure, you need to deploy them in 

bulk as a web application, which means you’re also scaling them that way.

•	 Caching

Most providers offer some form of caching the response of a function under specific 

circumstances—no auth, you provide the right caching headers, etc. This is useful for 

general data queries from external systems, like getting data of products in a specific 

catalog category.

•	 Location

Functions typically run on your provider’s server in a single specific data center. Some 

providers including Cloudflare and Netlify also offer functions that are executed on the 

edge, that is, on each server of their CDN and much closer to your visitors. This is useful 

for any time-critical processing like A/B testing and personalization (see the dedicated 

chapter in this ebook).

https://workers.cloudflare.com/
https://www.lambrospetrou.com/articles/battle-of-jamstack-platforms-netlify-vercel-aws/
https://www.netlify.com/products/edge/edge-handlers/
https://www.netlify.com/products/edge/edge-handlers/


3 Search.

Depending on where you’re sourcing data from, some 
headless CMSs like Contentful feature basic full-text search 
over content items. This works for simple websites or if your 
content model follows a web-centric approach. However, as 
websites grow, editors start reusing more and more content, 
and if the content model respects the website structure, it 
will quickly become a bottleneck. On the other hand, if the 
content model and website structure don’t match, the search 
capabilities of headless CMSs stop being effective. And that’s 
a good thing—the content model should primarily support the 
work of content editors and ensure proper content reuse.

https://www.contentful.com/developers/docs/references/content-delivery-api/#/reference/search-parameters/full-text-search


16 3 Search.

Headless CMS Website

Code block

Language

Code

Quote

Author

Text

Author

Name

Bio

Landing page

Title

Teaser

Body

Authors

URL slug

Landing page

Title

Teaser

Body

Authors’ names

URL

A working approach that scales is to use an external search provider like Algolia or Azure 

Cognitive Search. They follow the microservices trend—are the best-of-breed tools for 

the job—and allow you to build search indexes based on the website structure rather 

than the content model. Both of the mentioned providers also constantly improve search 

algorithms with Machine Learning, so they don’t just use density-based searching like 

many CMSs but allow search on your site to understand the context of what your visitors 

are looking for and provide a higher level of search result accuracy.

The diagram shows a typical landing page that consists of reusable content pieces. Only 

the landing page has a URL, so if the result of a search query contains any of the used 

content items, we want to navigate the user to the landing page URL. We achieve this by 

flattening the content structure to a web-centric search index. 

Headless CMS Algolia search index 

Code block #1

C#

Console.WriteLine…

Code block #2

C#

Return output…

Quote #1

Scott Hanselmann

.NET is cool!

Ebook landing page

Title

Teaser

Body

Authors

URL slug

Author

Ondrej Polesny

Ondrej started
programming…

Ebook landing page

Metadata

Content 

Ebook landing page

Title + Teaser + Body

Code block #1

Console.WriteLine…

Code block #2

Return output…

Quote #1

Scott Hanselman:
.NET is cool!

Author

Ondrej Polesny

https://www.algolia.com/
https://azure.microsoft.com/en-us/services/search/
https://azure.microsoft.com/en-us/services/search/


17 3 Search.

In this flattening example using Kontent and Algolia, we process all (including nested) 

content items into searchable blocks that contain content displayed on the page.

// get all content
const content = await kontentClient.getAllContentFromProject();
// all items with a predefined slug property -> SEARCHABLE PAGES (indexed 
objects)
const contentWithSlug = content.filter(item => item[config.kontent.slugCodename]);
// create a searchable structure based on the content structure
const searchableStructure = kontentClient.
createSearchableStructure(contentWithSlug, content);
...
createSearchableStructure(contentWithSlug: ContentItem[], allContent: 
ContentItem[]): SearchableItem[] {
    const searchableStructure: SearchableItem[] = [];

    // process all items with slug into searchable items
    for (const item of contentWithSlug) {
      // searchable item structure - metadata
      let searchableItem: SearchableItem = {
        objectID: $̀{item.system.codename}_${item.system.language}̀ , 
        id: item.system.id,
        codename: item.system.codename,
        ...
        content: []
      };

      searchableItem.content = this.getContentFromItem(item, [], [], 
allContent);
      searchableStructure.push(searchableItem);
    }

    return searchableStructure;
  }

https://github.com/Kentico/kontent-example-integration-algolia/blob/d16407329df78749a685caad07a005121d0d1c46/src/lambda/algolia-init-function.ts#L54


18 3 Search.

The flattened data are submitted to an Algolia index, which is configured to search 

through  content.contents, content.name , and name fields:

async setupIndex() {
    let result = await this.index.setSettings({
      searchableAttributes: [“content.contents”, “content.name”, “name”],
      attributesForFaceting: [“content.codename”, “language”],
      attributesToSnippet: [‘content.contents:80’]
    }).wait();
  }

This index also supports multilingual search through facets and returns 80 characters of 

content around the found match.

Algolia is an external system, so all updates leading to partial or full search index rebuilds 

are typically handled by webhook notifications. Those updates include all used content 

items, even those that are reused and only added/removed from the parent page.

The front-end implementation uses an API to fetch search results from the search 

provider’s network. To speed up development, Algolia offers InstantSearch.js library that 

contains already implemented customizable components with search functionalities.

https://github.com/Kentico/kontent-example-integration-algolia/blob/d16407329df78749a685caad07a005121d0d1c46/src/lambda/utils/algolia-client.ts#L19
https://github.com/Kentico/kontent-example-integration-algolia/blob/d16407329df78749a685caad07a005121d0d1c46/src/lambda/utils/algolia-client.ts#L19
https://www.algolia.com/doc/guides/building-search-ui/what-is-instantsearch/js/


4 Headless CMS.

Any large website is serviced by a team of content editors 
and it’s likely that the content is not exclusively created 
for the web channel only. Jamstack and the related 
tooling represent just one aspect of choosing a headless 
CMS—even though your client may only require a single 
channel for now, a website. Storing content in a headless 
CMS has the potential to free you from any content 
migrations in the future. It withstands any front-end 
changes and redesigns, technology changes, and so on.



20 4 Headless CMS.

Any headless CMS will do a good job when storing content for simple blog sites, but as the 

site grows, make sure to watch for:

•	 Open/closed source

Most enterprise-level systems are closed-source. That doesn’t necessarily ensure top 

quality and security but gives you a single entity that you can have a commercial 

relationship with. That entity is then responsible for the reputation of the product, which 

results in better service, higher reliability, faster responses, and quick bug fixes.

•	 Hosting

Headless CMSs offer the following types of hosting:

•	 Self-hosted

You are responsible for hosting and maintaining the solution. That also means solving 

performance, scaling, geo-redundancy/disaster recovery, CDN, monitoring and 

incident reporting, WAF, security hardening for any outside communication; the list 

goes on and on. In most cases, you almost certainly don’t want to do it.

•	 Managed hosting and IaaS

You host the CMS in the cloud using VM (IaaS), or the CMS vendor provides the 

hosting space for you (managed hosting). Some points from the previous paragraph 

are tackled by the provider (depending on the offering), some are still up to you, as 

you’re the owner and maintainer of the space.

•	 SaaS

You register, select a plan, and use the product. Everything else is handled  

by the vendor.

Note: Some CMSs like Sanity.io are a hybrid that requires you to self-host the 

content management front-end application.

The right choice always depends on the specifics of each project. However, we’re 

talking about large sites and microservices—you will need to focus on the front-end 

development, reliability of integrations, and communication between services. 

SaaS will handle the scaling, deployments, upgrades, security, and other rather 

unenjoyable tasks for you.

•	 Developer experience

There is always an API, but building a site is always easier with an SDK or tools built 

for your target platform. Some tools like Next.js or Nuxt can work with any data 

https://kontent.ai/blog/a-how-we-do-disaster-recovery?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack


21 4 Headless CMS.

source, but frameworks like Gatsby, Gridsome, Jekyll, Statiq, and others require 

special plugins.

“dependencies”: {
    “@kentico/gatsby-kontent-components”: “^7.0.0”,
    “@kentico/gatsby-source-kontent”: “7.0.0”,
    “@kentico/kontent-smart-link”: “2.1.0”,
    “@rshackleton/gatsby-transformer-kontent-image”: “^2.1.0”,
    “gatsby-plugin-image”: “^1.11.0”
}

Package.json showing used plugins that simplify sourcing data from  

headless CMS Kontent

Also, pay attention to images and other media files. On large sites, the assets can 

easily grow to several GB that will be provided through the CMS’s CDN (provided 

you’re using SaaS). Most providers also offer an images API and SDK that help 

with preparing your assets for responsive sites or directly integrate with the target 

platform capabilities, e.g., Gatsby Image.

https://www.gatsbyjs.com/docs/how-to/images-and-media/using-gatsby-plugin-image


22 4 Headless CMS.

•	 Content editor experience

Editors are used to traditional monolithic web-focused CMS platforms with 

WYSIWYG page editors which go directly against the content-first approach. 

However, the headless CMS needs to provide a friendly environment because if the 

content editor’s journey is tough, the project will fail due to their lack of engagement.

Oftentimes, editors are looking for the simplest features like keyboard shortcuts. But 

as their team grows, they will need tools for collaboration like inline commenting, the 

ability to add suggestions, safe real-time editing with auto-saving, advanced content 

workflow capabilities, and—of course—versions history and the ability to compare 

between versions. Having a personalized dashboard, a list of recently edited items, 

and a content calendar also helps them be productive.

•	 Visual website editing

Editors like to work visually and typically prefer to see their changes framed in the 

context of the website before publishing. There are three levels of this support:

•	 Preview

There is a preview button that takes editors to a predefined URL on a preview 

version of the site that is either server-side rendered (Next.js), client-side rendered 

with Preview API (Nuxt), or incrementally rebuilt after every content change 

(Gatsby with Gatsby Cloud).



23 4 Headless CMS.

•	 Links back to the CMS

On the preview version of the site, editors can see “Edit” buttons that take them 

directly to the editing interface of the backing content items and thus freeing them 

from having to find the respective content item in the CMS. This feature is available 

in many leading headless CMS platforms; the screenshot below is from Contentful.

•	 Visual editing

Editors see the Jamstack site directly within the CMS and can edit respective 

content items and components without leaving the UI.

Example: Kontent’s Web Spotlight, Storyblok



24 4 Headless CMS.

•	 Performance & reliability

Most modern headless CMSs run in the cloud as multi-tenant applications. 

However, if your website grows or your client requires it, the vendor should 

be able to provide dedicated architecture. Jamstack sites that are statically 

generated are inherently more immune to data source failures, but the delivery 

of your content should still be handled by a CDN (very relevant for assets) so that 

even if the data provider fails, your website stays operational.

•	 Integrations & data handling

Any larger site requires data and information from multiple sources or needs to 

communicate with multiple cloud services.

•	 External communication

Every headless CMS features webhooks for triggering actions of external 

systems. So make sure to check their granularity, reliability, and performance.

•	 UI extensibility

YouTube videos, Bynder images, Shopify products—editors need to  

work with a lot of different data types. The headless CMS should feature  

such integrations out of the box or provide a way to extend its UI to add  

such support.



25 4 Headless CMS.

•	 Management API

Serverless functions, form handlers, integrations—they all need a way 

to fetch and update data in the headless CMS. Typically, it’s a Content 

Management API that is complemented by SDKs for multiple platforms. 

Check the scope of the API to make sure it supports your use cases.

•	 Vendor locking

Clients who historically invested a lot of money into implementing legacy 

solutions that locked them for many years with a single vendor are now 

sensitive about this aspect. A good headless CMS features import/export 

functionalities (ideally into JSON) that allow you to take your data to another 

vendor should you need it.

•	 Migrations

Hardly any project starts on a green field. The headless CMSs usually 

feature Content Management API and supporting tools to make data 

migrations possible.

•	 Security

In the scope of security, large projects typically require features like SSO, flexibility in 

roles and permissions, and security certifications such as ISO 27001 and SOC 2 Type 2.

As the number of users in the CMS grows, project managers require an Audit log to 

see what changes were done and by whom.



26 4 Headless CMS.

•	 Support

Useful support engineers can save a lot of time in development, especially if they’re 

experienced with the Jamstack tools you’re using. The vendor typically guarantees 

response time within hours. To test this, simply ask a question and check what 

responses you’ll receive and how soon they’ll arrive.

•	 Pricing

There are more or less three levels of pricing:

•	 Free

Typically self-hosted and open-source solutions.

Examples: Strapi

•	 Low-cost solutions ($10-$500/mo)

Typically products built by individuals or small start-ups. They’re great for small 

to mid-size projects but may not keep up with you if your site and requirements 

grow quickly.

Examples: Prismic, Graph CMS, Storyblok

•	 Enterprise solutions ($999+/mo)

CMSs that are pure headless and ready to support large projects and 

organizations. They are prepared to fulfill requirements for dedicated architecture, 

have ISO certifications, offer SLAs, and can help you succeed by providing 

consultation support.

Examples: Kontent, Contentful, Contentstack

These are the typical differentiators that affect pricing:

•	 # of project

•	 # of users

•	 # of roles

•	 # of content types

•	 # of content items

•	 # of languages

•	 Allowed bandwidth (and applied FUP)

•	 Additional services like support, SLA, etc.



27 4 Headless CMS.

Additional functional 
features.

Headless CMS is the best-of-breed system for content management. Nevertheless, 

many developers expect it to handle other functional requirements of Jamstack 

sites, like forms management, email sending, tabular data management, and so on. 

Headless CMSs don’t support any of these because they shouldn’t. If your project 

requires such functionalities, try to pick a specialized service that fulfills your use case. 

See the table below that lists a few providers per each category:

Forms

Netlify Forms

Form.io

Basin

JotForm

Your CRM (like Salesforce)

Email sending

Sendgrid

Mailchimp

Mailjet

Tabular data

Serverless databases

    - AWS Aurora

    - Cosmos DB

Blobs

    - AWS S3

    - Azure Blob

Static JSON files

Custom Analytics

Google Tag Manager

Custom Event

Netlify Analytics

Segment (CDP)

Tracking (Google Analytics)

https://www.netlify.com/products/forms/
https://www.form.io/
https://usebasin.com/
https://www.jotform.com/
https://help.salesforce.com/s/articleView?id=sf.pardot_form_handlers.htm&type=5
https://sendgrid.com/
https://mailchimp.com/
https://www.mailjet.com/
https://aws.amazon.com/rds/aurora/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://www.google.com/aclk?sa=L&ai=DChcSEwjMvazdrqbyAhXR5HcKHQ4WA7oYABAAGgJlZg&ae=2&sig=AOD64_1bboR-6kF7Gn1WlXosE-devDhTzg&q&adurl&ved=2ahUKEwjln6XdrqbyAhUVPuwKHc6oAG8Q0Qx6BAgDEAE
https://azure.microsoft.com/en-us/services/storage/blobs/
https://developers.google.com/tag-manager
https://www.analyticsmania.com/post/how-to-track-custom-events-with-google-analytics-4/
https://www.netlify.com/products/analytics/
https://segment.com/


5 Multiple 
languages.

Multilingual support is a very underestimated feature and 
requires a lot of support on both the data source and site 
implementation sides. Most often, Jamstack sites are 
built with content from headless CMSs and their job is to 
fully support the multilingual capabilities listed below.



29 5 Multiple languages.

•	 Multiple languages

The support for multiple languages needs to go beyond simple culture codes. There 

are dialects and regional specifics you may need to deal with as well as define their 

fallback language.

•	 Content management

On large sites with a lot of content, you will often deal with edge situations related to 

languages and translations, e.g.:

•	 A content item references another content item that does not exist in the current 

language. Does that fulfill a “required” condition?

•	 Rich text element links a page that is available only in a specific language, not the 

general fallback. Is this OK, and how are you going to render it on the website?



30 5 Multiple languages.

•	 A personalization variant of a component is not translated into the current 

language. Should you exclude it?

•	 Typically, these sites also have many users who maintain content in specific 

languages, and if we’re talking about corporate sites, each country site may 

have different requirements for languages. The used CMS needs to be capable of 

granularly setting permissions.

The implementation in Jamstack is the easier part. Every CMS gives you the ability to 

filter content by language in its API or SDK. If you’re using a front-end framework that 

requires a special plugin, verify how it handles translations and fallback languages.



31 5 Multiple languages.

For example, if your site is built with Gatsby, the Kontent source plugin adds two 

language-related fields to every content item  - preferred_language and  

 system. language :

{
          “node”: {
            “elements”: {
              “title”: {
                “value”: “Accounts Lek 24/7 cutting-edge support Spring non-
volatile”
              }
            },
            “preferred_language”: “cs-CZ”,
            “system”: {
              “language”: “en-US”
            }
          }
}

If you filter for {preferred_language: {eq: “cs-CZ”}} in the GraphQL query, you 

will get content items in the Czech language (if available) or their English fallbacks. 

The actual language of every item is in the system.language field, so you can decide 

whether or not to use it.

This distinction also allows you to inform website visitors that a linked item is only 

available in the fallback language:

https://github.com/Kentico/kontent-gatsby-packages/tree/master/packages/gatsby-source-kontent#readme


6 Authentication 
& gated content.

First of all, let me explain two terms related 
to protecting assets on sites:

•	Authentication: Identifying a visitor

•	Authorization: Deciding whether a user can access  
a specific resource

In the scope of Jamstack sites, it’s important to know whether 
we want to just authenticate visitors or also authorize them.



33 6 Authentication& gated content. 

 Typically, we aim for one of the following use cases:

•	 User profile, user data forms & other highly personal pages

•	 Content personalization based on rules (see the dedicated section below)

•	 Gated content

User profile, forms & other 
highly personal pages.

As I described in the Performance section, it doesn’t make sense to pre-build every 

single page for large sites. With user profiles and other highly personal pages, it’s 

almost impossible due to frequent changes in the data set. You’re left with three options 

for fetching data:

•	 Server-side on demand

With Next.js incremental static regeneration or Netlify’s DPR, these pages can  

be rendered on demand. Rendering happens on the server, and the client waits for 

the response.

Example: public profile page of a user, list of recently played games on a gaming 

portal, etc. Those are all pages that are user-specific, but still public.

This is a code example from Next.js showing incremental static regeneration:

export async function getStaticProps({ params }) {
  return {
    props: {
      userData: await getUserData(params.urlSlug)
    },
    revalidate: 60
  }
}



34 6 Authentication& gated content. 

•	 Client-side

The particular page acts as a little SPA. It is served as a static page with JavaScript 

code that makes an API request on every page load. As soon as the server responds 

with data, we render the page.

Example: user data management page, order history page, etc.

This is a code example from Next.js showing gathering data dynamically on the client:

export default () => {
    const router = useRouter()
    const [ isReady, setIsReady ] = useState(false)
    const { userId } = router.query

    // get orders by UserID on client
    const { data, error } = useSWR(() => userId, getOrders)
	 ...
    if (isReady && data && Array.isArray(data))
    {
        // render HTML



35 6 Authentication& gated content. 

•	 Server-side at request time

The use case is the same as for the client-side, but here it’s the server that fetches the 

data at request time before responding. That causes a bit slower TTFB but removes 

the additional async request on the client.

This is a code example from Next.js showing server-side data fetching:

function Page({ data }) {
  // Render data...
}

// This gets called on every request
export async function getServerSideProps(context) {
  const { userId } = context.query
  // Fetch data from external API
  const data = await getOrders(userId)

  // Pass data to the page via props
  return { props: { data } }
}

export default Page

The right solution highly depends on the use case. Nowadays, the trend is to go with 

server-side data fetching on the edge, as it removes the additional logic and processing 

on the client and saves one round-trip to the server. However, if the data on the page 

requires authentication, you’ll need to go with API calls anyway and first ensure that the 

user is authenticated and has proper authorization.



36 6 Authentication& gated content. 

Gated content.

A common example of a gate is an age-gate, often used when a user wishes to 

access products or content that require them to be older than a certain age, e.g., for 

purchasing alcohol. Gates are often used in lead generation. The intention is that 

a report or article is enticing enough for a user to provide contact details.

To implement gated content, we always need a serverless function or another form of 

server processing power. Both Next.js and Gatsby support serverless functions out of 

the box; for any other framework, you can just use them separately.

Serverless
function

1.
Wants to see

gated content

3.
Verifies

data

4.
Subscribes

to newsletter

5.
Gets gated

content

6.
Displays 

gated content

Headless
CMS

Static site
Visitor

2.
Submits

form



37 6 Authentication& gated content. 

The serverless function needs to solve the following tasks:

•	 Verify that the user has completed the required action.

// this checks whether the user provided an email address
const data = req.body.email;
if (!email) {
return res.status(400).send({ message: ‘Email not provided.’ });

•	 Perform the desired action with user data (subscribe to a newsletter, verify the 

payment, etc.).

// subscribe the user to our newsletter
subscribe(email);

•	 Provide the gated content.

// get gated content from the headless CMS
const contentItem = await getGatedContentItem();
return res.status(200).send({
  gatedContent: contentItem.gated_content.value ?? ‘’,
});

The gated resource can come from the same project within the headless CMS as public 

content or be stored in separate storage to protect project IDs and/or access keys.

If we want the gated content to be indexed, we need to take three more steps:

•	 Recognize Googlebot on the front end and provide the gated content directly.

// If we think this is a Google request then fetch content immediately
const isGoogle = navigator.userAgent.toLowerCase().includes(‘googlebot’);
if (isGoogle) {
  const content = await fetchContent({ animal });
}



38 6 Authentication& gated content. 

•	 Recognize Googlebot in the serverless function and provide the content.

const isGoogleAgent = req.headers?.[‘user-agent’]?.toLowerCase()?.
includes(‘googlebot’) ?? false;
if (isGoogleAgent) {
  let verified = false;
  try {
    // Verify Googlebot via reverse DNS lookup.
    const ip = (req.headers[‘x-forwarded-for’] || req.socket.remoteAddress) as 
string | undefined;
    verified = await verifyGooglebot(ip);
  } catch (error) {
    …
  }
}

The Googlebot verification is based on the known IP addresses; the full implementation 

is available on GitHub.

•	 Mark the content as paid using schema.org attribute isAccessibleForFree.

You can see the complete working example of gated content with further details here.

https://github.com/jcowley/googlebot-verify
https://github.com/jcowley/googlebot-verify
https://schema.org/isAccessibleForFree
https://github.com/rshackleton/nextjs-gated-content
https://medium.com/front-end-weekly/gated-content-and-the-jamstack-is-it-achievable-of-course-6408f1ccf7e8


7 Personalization 
& A/B testing.

Many developers see Jamstack as a good fit only for 
small sites because they don’t see how personalization 
and similar features can work on a static site. In this 
chapter, I will explain both personalization and A/B 
testing, as they are very similar to a certain extent.



40 7 Personalization& A/B testing. 

Personalization.

There are two types of personalization:

•	 User-specific content

When you want to display personalized greetings, show the customer’s last purchase 

with a link to “purchase again,” and so on.

Example: “Hey Ondrej, your last visit was: 1 week ago from France (IP: 75.122.14.151)”

•	 Persona and group-specific content

Personalization is based on the information you know about the user but is 

applicable to a group of people, not an individual.

Example: product recommendations, banner variant, etc.

Both need a server, serverless function, or client-side JS. The user-specific content 

requires you to know the specific user—they need to be authenticated or come to the 

site via a special link that contains their identifier.

The personalization based on persona or group has three parts:

1.	 First, you need to collect some data about the user. Typically, you monitor what they 

do on the site via a tracking script. For example, the user can be browsing through 

home printers or looking at gaming consoles.

/gaming
/gaming/playstation-5
/gaming/playstation-4-slim
/gaming/playstation-vr-megapack
...

https://www.freecodecamp.org/news/how-to-make-static-site-dynamic/


41 7 Personalization& A/B testing. 

2.	 Then, when you’ve recorded enough activity, you evaluate this data and draw some 

conclusions about the user. In this example, you’d assign the user to “interested in 

printers” and “interested in gaming” personas respectively.

3.	 And finally, you can personalize the content on your site. Typically, you prepare 

multiple variants of some content and assign them to your personas. For example, 

a “recommended product” box will be showing HP Laser 107w for the “interested in 

printer” persona and a PlayStation for the “interested in gaming” persona.

/gaming
/gaming/playstation-5
/gaming/playstation-4-slim
/gaming/playstation-vr-megapack
...

Interested
in gaming

Interested
in gaming

Personalized
variants

You may like

Cool electronics

Playstation 5

Random
product

HP Laser
107w

Playstation 5



42 7 Personalization& A/B testing. 

Of course, in reality, personalization engines, including Ninetailed, Uniform, 

Salesforce Pardot, and others, are equipped with advanced techniques to understand 

the user and properly guide them using personalization to a successful conversion. 

The terminology and approach of each of these platforms are a bit different, but this 

is in general how it works.

So how we do this on a static site:

•	 Client-side with async requests

Once the page loads your code, the browser makes an async request for the 

personalized content. Typically you ask the tracking system (like Pardot) for the 

identification of the content that should be displayed:

<script type=”text/javascript” src=”https://tracker.kontent.ai/dcjs/849473/354/
dc.js?v=1627544857873”></script>

The job of the tracking system is to identify the source of the request (specific user) and 

evaluate what type of content should be displayed. It responds with the content ID:

document.write(“the_state_of_jamstack_2021_report”);

You
Define
rules

Add personalized
content

Personalization
platform

Personalized
component

Data 
evaluation

Logic

Website implementation

Content

Browsing
data

Headless
CMS

Visitor

https://ninetailed.io/
https://uniform.dev/
https://kontent.ai/blog/static-site-personalization?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack


43 7 Personalization& A/B testing. 

Then the browser makes another request to the used content storage (headless 

CMS), fetching and displaying the content:

fetch(“https://deliver.kontent.ai/{projectId}/items/the_state_of_jamstack_2021_
report”)
        .then(function (response) {
          return response.json();  
        })
        .then(function (data) {
          var html = getHTML(itemToDisplay, data);
          container.innerHTML = html;
        })

The last step can be eliminated by pre-rendering all content variants into the static 

page and only displaying a single variant once we know which one. Find out more 

about the technical specifics or overall personalization process on the Kontent blog.

•	 Fully client-side

Some providers like Uniform allow you to move the tracking, evaluation, and 

personalization to the client-side completely. Once you define the rules, the logic  

is bundled with your site’s implementation and executed on the client.

Personalization
platform

JSON data

1.
What should

be displayed?

Client-side
JavaScript

The_state_
of_jamstack_
2021_report

2.
Get content

3. 
Personalized

website

Headless
CMS

Visitor

https://kontent.ai/blog/static-site-personalization?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://kontent.ai/blog/kontent-loves-personalization?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://docs.uniform.app/optimize/dev/content-management/kontent/getting-started


44 7 Personalization& A/B testing. 

Uniform provides a special UI component that handles all the steps automatically; 

you only need to provide the content variants:

export const PersonalizedHero = ({ item }: { item: 

PersonalizedHeroData }) => {

  return (

    <Personalize

      variations={item.heros}

      component={Hero}

      trackingEventName=”heroPersonalized”

      loadingMode={PersonalizedHeroLoading} // specifiy a 

component for a potential loading state

    />

  );

};

There are no additional requests necessary apart from the site’s JS bundle.

The personalization rules are managed in the Uniform UI, and with every change, the 

system triggers a new site build using a webhook. Check out this guide in Uniform’s 

docs which describes how this type of personalization works in detail.

Personalization
platform

Website 
implementation

Visitor

Build server

Client-side

JS personalization 
bundle

Headless
CMS

https://docs.uniform.app/optimize/dev/content-management/kontent/fetching-data#use-kontent-data-with-the-personalize-component
https://docs.uniform.app/optimize/dev/architecture/personalization
https://docs.uniform.app/optimize/dev/architecture/personalization


45 7 Personalization& A/B testing. 

•	 Server-side/Edge

Both types of client-side personalization have one disadvantage—the async requests 

take some time. How much depends on your visitor’s latency and device speed, but 

we’re talking hundreds of milliseconds even in ideal cases.

These days, you’re able to leverage serverless functions that run on the edge, much 

closer to your visitors. They act as a proxy server—the request for a static page 

goes to them, they intercept the response and post-process the already generated 

page—they choose which variant of the pre-generated ones should be displayed.

They effectively do the client-side job on the CDN and use a small cookie to identify 

the visitor. You can also use a hybrid approach that first personalizes on the edge, 

and once the bundle is loaded, continues on the client-side.

JS personalization 
bundle

JS personalization 
bundle

1.
Generated

static pages

2.
CDN

Visitor

3.
Requests

a page

4.
Choose which

component variant to use5.
Personalized 

page



46 7 Personalization& A/B testing. 

A/B testing.

A/B testing is very similar to personalization, but the evaluation logic is replaced with 

a simpler decision logic. You can run an A/B test on the whole website traffic splitting it into 

equal halves, or you can decide to test only people from the US and so on. The important 

thing is to always show them the same variant once you’ve shown them one—this is 

achieved by storing a small cookie on the visitor’s browser.

A/B testing is simpler to implement than personalization because you don’t need to 

know either anything or very little about your visitors. That’s why many Jamstack 

hosting providers offer tools for A/B tests, like Netlify that lets you split the traffic 

between two versions/branches of your site or Layer0 that also supports splitting 

traffic between multiple sites.

Branch ‘main’ Branch ‘cool’

‘main’
conversion

‘cool’
conversion

‘main’
conversion

Google Analytics

https://docs.netlify.com/site-deploys/split-testing/
https://docs.layer0.co/guides/split_testing


47 7 Personalization& A/B testing. 

The results of such testing come from a specified goal, typically a conversion. On each 

version of the page, you need to adjust the Google Analytics tracker or similar code 

that logs successful conversions:

<script>
  ga(‘send’, ‘pageview’, {
    ‘Branch’:  ‘{{ getenv “BRANCH” }}’
  });
</script>

Note: This code sample comes from Netlify docs and shows how to include the branch 

name in the tracked conversion—in this case, a simple page view.

You can also handle A/B tests purely on the client-side with tools like Google Optimize. 

Check out this article for more info.

https://docs.netlify.com/site-deploys/split-testing/#send-to-google-analytics
https://support.google.com/optimize/answer/6211930?hl=en
https://kontent.ai/blog/kontent-loves-ab-tests?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack


8 E-commerce.

All the previous sections about performance, search, 
personalization, and so on come together here. 
E-commerce requires you to combine all the features of 
the modern web to create the best visitor experience.



49 8 E-commerce.

All articles about e-commerce tell you that the conversion ratio decreases exponentially 

with long page loads. Pre-generated sites bring performance out of the box, so it seems 

like a great fit for e-commerce. However, there are a few things you need to consider:

•	 Product catalog

•	 Shopping cart

•	 Checkout process

•	 Payment

With e-commerce, the situation is more complicated than with other services. For 

example, you expect a hosting provider to build & host your site just like you expect 

a search provider to maintain a search index and give you an API or tools to use on 

your site. E-commerce, or headless e-commerce, providers don’t all offer the same 

type of integration.

•	 Monoliths

If your client is already using a provider like Shopify, Prestashop, Magento, or 

a similar custom solution and they are happy with it, you’ll likely be looking at ways 

to integrate these solutions with Jamstack.

•	 Buy button

The platform lets you define a button or a larger section of products that you can 

add to your site using a generated code block. It works either client-side (similarly 

to an iframe) or is hosted on the provider’s infrastructure and uses redirects.

Example: Shopify buy button

Customer

E-commerce
platform

Checkout:

Name:

Street:

...

Redirect
back

Redirect product 1

Your
store

Your
store

BUY

Thank you
for your 

purchase :)

https://www.shopify.com/buy-button


50 8 E-commerce.

•	 Storefront

If you need more freedom or feel like the JavaScript site add-on is not good 

enough, you can use Storefront—a layer, an implementation, on top of a specific 

tech stack that connects e-commerce platforms and front-end frameworks. It’s 

like a plugin that provides e-commerce functionalities.

Make sure to select the one that fits your tech stack. Very popular are Vue 

Storefront that extends Nuxt.js and connects with almost all e-commerce 

monoliths, Next.js Commerce and React StoreFront if you’re using React and 

Next.js, and Gatsby plugin for Shopify.

•	 Custom solution

If the monolith your client is using is not supported by the storefronts or you want to 

build the front end yourself, you can always use its API and connect it manually.

•	 Checkout add-on

A good solution if you’re looking for a simple way to sell just a few products. It’s 

typically a simple buy button that redirects your visitors to a checkout page hosted 

by the provider.

Example: Stripe Checkout 

Customer

product 1

Your
store

Your
store

BUY

Thank you
for your 

purchase :)

Your store implementation

Storefront

Checkout

Catalog

Shopping
cart

JS framework

Plugin Plugin Plugin

E-commerce 
platform

API

https://www.vuestorefront.io/
https://www.vuestorefront.io/
https://nextjs.org/commerce
https://www.reactstorefront.io/
https://www.gatsbyjs.com/plugins/gatsby-source-shopify/
https://stripe.com/docs/payments/checkout


51 8 E-commerce.

•	 Full add-on

The integration is done by a client-side JS bundle that you add to your site:

<script type=”text/javascript” data-api-key=”{YOUR_API_KEY}” src=”https://cdn.
snipcart.com/scripts/snipcart.js”></script>

The JS code adds the shopping cart and checkout functionality in a component that 

slides over your website when needed.

In the case of Snipcart, all products in your store need to be rendered with special 

HTML attributes defining their identifiers and prices:

<button type=”button” class=”snipcart-add-item”
  data-item-name=”Headphones”
  data-item-price=”200.00”
  data-item-id=”42”
  data-item-url=”https://snipcart.com/headphones”>
Add to cart
</button>

https://snipcart.com/


52 8 E-commerce.

This is all happening on the client. Before the order is processed, Snipcart goes back 

to your site ( data-item-url ) and checks the HTML attributes of ordered products if 

they match the submitted order.

Another provider, Gumroad, requires you to store the products within their system, 

so the checks are done on the provider’s side.

Example: Stripe, Gumroad

•	 API-first

Earlier, I mentioned monoliths that expose an API, but there are also pure headless 

providers that are API-first. The well-documented API and sample apps for multiple 

platforms are a standard, but some also provide GraphQL endpoint.

Example: Commercetools, Commerce Layer, Slatwall

•	 Custom solution

In cases when monoliths or API-first platforms don’t suit your needs, you can 

build the solution yourself. Yes, it will cost you a lot of development time, as you 

need to address all the aforementioned aspects (product catalog, shopping 

cart, checkout process, and payment) on both fronts—on the front end and back 

end. Even so, this approach is not that rare, and I’ve seen it successfully run 

in production multiple times. Take a look at the following diagram showing an 

architecture built by one of our clients:

Your store implementation

JS framework

E-commerce platform

Customer

product 1

Your
store

Your
store

BUY

Thank you
for your 

purchase :)

Plugin Plugin Plugin

Checkout

C
a

ta
lo

g

Shopping
cart

API

https://help.gumroad.com/article/135-setting-up-the-gumroad-overlay-on-your-website
https://snipcart.com/
https://help.gumroad.com/article/135-setting-up-the-gumroad-overlay-on-your-website
https://docs.commercetools.com/api/graphql
https://commercetools.com/
https://commercelayer.io/
https://publicapi.slatwallcommerce.com/?version=latest


53 8 E-commerce.

If this is relevant to you, I’d recommend this article about combining data sources 

in a middleware layer that separates concerns and simplifies the front-end 

implementation.

I also recommend the Headless E-commerce guide published on Snipcart’s blog that 

features this nice comparison:

Just keep in mind that a row full of checkmarks does not mean it’s the ultimate 

choice. Different clients, different development teams, and mainly different budgets 

since there are huge differences in pricing among e-commerce providers—these all 

require a specific approach. That’s also why neither this section nor this comparison 

table tell you what the best solution is. However, considering you’re reading this 

book and want to use Jamstack for your projects, your best bet will likely be the API 

or the Storefront approaches.

Customer

Hosted on DigitalOcean

Order management
system

PostgreSQL

Shopping carts
Abandoned carts

Checkout
orders

graphQL

Store front-end
implementation

Legacy
system

Products
Prices

Sta�

product 1

Your
store

BUY

Apollo middleware

https://medium.com/free-code-camp/how-to-make-your-website-clean-and-maintainable-with-graphql-13fe06098656
https://snipcart.com/blog/headless-ecommerce-guide


In conclusion.

In this book, I showed you that Jamstack can be used for 
large projects. Just like any other way of building websites, 
it has its disadvantages and can’t be blindly used for 
everything. Especially larger websites with specific features 
require you and your team to evaluate the pros and cons 
like you would do for any typical client-server architectures 
based on .NET, Java, or PHP. But the fact is, Jamstack brings 
a lot of benefits including performance, security, simplicity 
of development, and openness of the communities, out of the 
box. And when I look at how rapidly it evolves, how static site 
generators have become true website-building frameworks, 
how providers race to introduce new services and improve 
the already existing ones, one thing is clear—Jamstack is not 
only a viable way of building websites but is also becoming 
a standard and will continue to grow in that sense.



Stay in 
touch.

Twitter Discord 

https://twitter.com/kenticokontent
https://kontent.ai/discord?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack


Kontent by Kentico is a cloud-based headless CMS that features first-class 

integrations with all leading Jamstack frameworks and many sample apps to speed 

up your development.

Kontent represents the easiest way to manage content with Jamstack by allowing 

both developers and editors to focus on what they love. Developers can fetch 

content via CDN-backed API or GraphQL and process it using an open-source 

SDK for their preferred platform. Editors become more productive thanks to 

a personalized dashboard, multiple fully customizable workflows, and advanced 

collaboration features including comments, suggestions, and tasks.

Kontent is prepared to deliver on enterprise requirements like SLA, dedicated 

architecture, professional customer services, and training. In addition to that, the 

platform has three ISO certifications (ISO 9001, ISO 27001, and ISO 20000) and has 

passed the SOC 2 Type 2 examination.

About 
Kontent.

SEE KONTENT IN ACTION →

Copyright © 2021 Kentico Software. All rights reserved.

https://kontent.ai/request-demo?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://twitter.com/KenticoKontent
https://www.linkedin.com/showcase/kenticokontent
https://www.facebook.com/KenticoKontent/


The best part of the Jamstack architecture is that it gives 
you freedom to choose the best-of-breed service for each of 
your requirements. For content management, there are many 
to choose from, but Kontent provides us with an unmatched 
balance of first-class customer support, developer features 
and SDKs, and market-leading collaborative editing features 
more akin to Google Docs than a typical headless CMS.”

Andy Thompson. 
CTO, Luminary

“

https://kontent.ai/technologies/jamstack-cms?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack


Ondrej Polesny. 
Developer Evangelist, Kentico Kontent

About 
the author.

Ondrej Polesny is Developer Evangelist at Kontent. Always interested in 

problems that everyone claims have no solution, Ondrej enjoys building 

the architecture of components or applications, and figuring out how all 

parts fit together. He is constantly in touch with clients and the developer 

community which brings him closer to many interesting digital projects 

including, but not limited to, Jamstack.

Twitter: @ondrabus

Website: ondrabus.com

https://twitter.com/ondrabus
https://twitter.com/ondrabus
https://ondrabus.com/

