. Q 0 Kontent.

by Kentico

-
</>

Serious
Jamstack.

Headless CMS and Jamstack
for enterprise projects

By Ondrej Polesny

Introduction.

Believe it or not, the term Jamstack has been with us for over six years now. But it’s
only the last year or two when developers really started to take Jamstack as their

serious choice when building websites.

In this book, | don’t want to explain the Jamstack basics and why we, developers,
like to build pre-generated websites. If you’re reading these lines, you probably
already know the Jamstack benefits, and you’re considering it for your next project.
Here, | want to focus on the obstacles we always need to work around when building
anything beyond a simple presentation website. | aim to show you that Jamstack is

ready for enterprise projects.

Ondrej Polesny.
Developer Evangelist, Kentico Kontent

Let’s start by outlining the advanced scenarios
and their potential problems. The chapters in
this book correspond to the items in this list:

1 Performance.
As your project grows beyond a few hundred pages/content items, you start

experiencing longer builds that affect content’s time to production.

2 Server, serverless, security.

Every serious Jamstack site needs a server; there is always some dynamic

functionality that requires server-side handling and brings security concerns.

3 Search.
On top of server processing, search queries also need advanced

evaluation logic and a snapshot of all your current content.

L Headless CMS.

For a simple presentation website, you can use pretty much any headless CMS

or even Markdown files. As your site grows, you’ll need a reliable source of content.

5 Multiple languages.
English, Spanish, German, those are the basics. But oftentimes

you need to work with local dialects and regional sites.

6 Authentication & gated content.

Learn how to identify your visitors and allow them to see gated content.

7 Personalization & A/B testing.
These are the typical server-side features to evaluate what

content brings you the most conversions.

8 E-commerce.
Find out how to handle shopping carts, orders,

payments, and other e-commerce features.

12

15

19

28

32

39

48

Performance

One of the key attributes why you choose

Jamstack is the performance. But as time goes

by and your project grows, you’ll encounter two
aspects of Jamstack sites that require your attention:

Build and deploy time
Hosting

It’s not a question of “if,” but “when” both
of these become a bottleneck.

Build and deploy time.

Many developers don’t see build time as an important metric. When a change is
published, it doesn’t matter if it takes a minute or two before it’s visible on the front end.

While that is true in most cases, the problem increases as the content grows.

According to a benchmark published on CSS Tricks that only worked with markdown files,

it takes Gatsby over 70s to build a site with 8k pages. That includes only plain text with
no images and does not include the time required to fetch data from a data source and

convert them to GraphQL nodes.

Internally, we have experienced builds taking way over 15 minutes for about 3k
content items. It highly depends on the site’s implementation, data complexity, images

processing, etc.
The same behavior occurs for other frameworks like Next.js, Nuxt, Jekyll, and so on.

So why is it a problem?

Content previews

If your site is truly static and does not allow editors to see server-rendered previews,
you need to build it every time an editor wants to see their content in the website frame.
Something that traditional websites let them see instantly. Obviously, they hate to wait

a few minutes for it.

Scheduled publishing

Once editors are happy with their changes, they don’t just hit “Publish” and walk
away. They always expect to know if and when it gets published. They check the
page again to see if they haven’t made some horrible mistake like forgetting to publish
some related content. It becomes very frustrating for them to wait a long (or worse,

unpredictable) length of time to see it published.

https://css-tricks.com/comparing-static-site-generator-build-times/

Long and stacking builds

The previews are sometimes solved by hooking a headless CMS webhook into a build
platform that rebuilds the site or its part on every content change. The problem is,
there can be a lot of changes. Even if you rebuild only after a content item is moved

to a special workflow step or is published, when there are multiple editors working on

a single project, the build server will be busy building the site 24/7. That’s not something

developers, editors, or the project owner’s wallet like to see.

Solutions
Depending on your chosen framework, there are ways to make builds behave even for

projects with large amounts of content.

Server-rendered content previews
Advanced static site generators like Next.js and Nuxt allow you to render a specific

page on demand.

Next.js achieves this by using serverless functions and the logic is integrated into
the platform. If you choose a web host that fully supports Next.js, there are no
extra steps for you, as the functions are extracted and deployed automatically

during next build.

All content
(draft)
Headless
8 B 8 B B CMS
Blog Landing Docs Menu Categories
posts pages archive items J/

8 B B8 B B8
@ @ Blog Llanding Docs Menu Categories 8

osts ages archive items
Editor P pag Visitor

SPA

+ Preview API
token

Website N @
implementation

Build server Static site

NuxtJS lets you switch the server-side pre-rendering to classic SPA mode and
build the preview site on the client. You’ll probably end up deploying

two sites—production and preview—to protect your preview API keys, but the
rest is automatic.

Use native platform

If your project does not need advanced features available in JS-based frameworks,
like front-end bundles with client-side functionalities, you can leverage the benefits
of compiled programming languages with static site generators like Hugo (Go) or
Jekyll (Ruby). According to the same benchmark mentioned earlier, Hugo is about
15-30x faster than JS-based frameworks.

Don’’t build everything

But the best solution is to simply not build everything every time. Here the solution is
highly dependent on the used framework.

Gatsby

If you’re using Gatsby and have it hosted on Gatsby Cloud, you can use

incremental builds. Provided your headless CMS features a first-class integration

with Gatsby, you can hook the content editing notifications to Gatsby Cloud.

1.
Content Headless
change CMS

® 8 B B B8 B

O
Blog Landing Docs Menu Categories D
Editor @ posts pages archive items Visitor
2.
Webhook

N

eee 3, coe
@ < Incremental — @ — @

build
Preview site Gatsby Cloud Public site

Whenever a content editor changes a piece of content, Gatsby Cloud receives
the information and rebuilds only affected pages. The incremental build takes

only a few seconds and works for both preview and production builds.

https://nuxtjs.org/docs/2.x/features/live-preview
https://www.gatsbyjs.com/products/cloud/integrations/
https://www.gatsbyjs.com/products/cloud/integrations/

NuxtJS

NuxtJS allows you to separate code and content builds. First, it builds the site and
then crawls it starting from the homepage to find all internal links. This way, it
incrementally pre-builds all pages during a single deployment. If you only change
content, you don’t need to touch the built website (i.e., the bundle), only recrawl it

and regenerate the static pages. That’s what NuxtJS does for you automatically.

Next.js
With Next.js, you don’t have to build all the pages during the initial build. For each

page, you can choose how it should be handled:

= Static generation (SSG)
Page will be generated at build time.
= Client-side rendering (CSR)
Page will be rendered during the initial load on the client.
= Server-side rendering (SSR)
Page will be handled by Node server or serverless function for each request.
= Incremental static regeneration (ISR)
Request to a page in this mode will return an already generated and cached page.

If it doesn’t exist or has already become stale, Next.js will rebuild it and cache it.

So if your website has 20k pages, you can pre-build (SSG) the most visited 1k.

Pages that show live data can be set to server-side rendering (SSR), and the rest
will be prepared and cached on demand (ISR). The concept is very similar to lazy
loaded images on long pages where your browser downloads only the images in

your viewport and keeps lazy loading the rest as you scroll.

Headless @ @
_
CMs Blog Docs
posts archive
8 8 B8 -

Landing Menu Categories
pages items Cache

Do

S Visitor

Website - @ @ ;homel .
implementation 'google-campaign

Build server Static site

Other platforms and Netlify’s DPR
If you’re using other platforms, you can still use on-demand-built pages with

Netlify’s distributed persistent rendering. The concept is pretty much like simplified

incremental static regeneration of Next.js. You pre-build only the critical part of
your website and leave the majority of pages to be rendered by on-demand builders.
Those are essentially just serverless functions that do the same magic as your regular

build, only on a page level and when needed.

This is still a new initiative, and as of August 2021, they support Next.js via the Essential
Next.js plugin and 11ty, but the community will likely add support for more SSGs soon.

Watch for client-side JS bundle size

When using modern JS frameworks, your visitors download the first page and
asynchronously fetch the client-side JS bundle that, once fetched, rehydrates the
page. While that makes every subsequent page load incredibly fast and can even

enable your site to work offline, it has the potential to hurt your Google Web Vitals

results and thus SEO. Try to optimize the bundle size by including only necessary

packages, keep the core framework packages updated, and follow its best practices.

https://docs.netlify.com/configure-builds/on-demand-builders
https://www.netlify.com/blog/2021/04/22/next.js-on-netlify-now-with-support-for-on-demand-builders-and-distributed-persistent-rendering/
https://www.youtube.com/watch?v=bENDCw9aLV0
https://web.dev/vitals/

Hosting.

People often have their preferred host that they use for all Jamstack sites they create,

or they default to one based on the used platform. If your site uses Gatsby, you might

host it on Gatsby Cloud, if it’s a Next.js site, you might use Vercel, and so on. However,

even with all of the above configured identically, different hosting providers may

provide performance benefits over others.

10

Build time
Many hosts offer to handle the complete deployment process of your site including
build. However, the build time on each host highly depends on the used architecture.

When | tested a single Next.js site on multiple hosts, the build times were ranging

from 40 seconds to 3.5 minutes. If your site is large and you need to decide which
pages will be pre-built and which pages will be server-rendered, the build time

becomes a very important metric.

CDN locations

Every Jamstack provider advertises that they provide a CDN. Jamstack sites are
fast by default. Even hosting them on a standard server halfway around the world
produces an acceptable visitor experience, but with larger sites, and especially

e-commerce, the CDN size and performance start to matter.

For example, Netlify states that their Edge network features 6 points of presence.
They allow you to switch to a high-performance edge with 27 points for a custom
price. Vercel claims to use 15 regions, LayerO offers 31 edge locations and 85+ for
custom plans, and Cloudflare states that they use 194 data centers across the globe.

Also, pay attention to the resources that are not served from the deployed site.
Depending on the site’s implementation, it can be images, videos, external scripts,

and so on.

Pricing
Every host offers a limited free tier that is always capable of hosting small to
medium websites. For serious commercial sites that require guaranteed uptime

and are maintained by teams rather than a single person, you will need to switch

https://kontent.ai/blog/comparison-of-jamstack-hosting-platforms-for-next-js?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://www.netlify.com/pricing/
https://vercel.com/docs/edge-network/regions
https://www.layer0.co/pricing
https://www.cloudflare.com/plans/2/

1

to a paid plan. They start as low as $10/month and go up quickly. The typical
differentiators are:

= Team members

Bandwidth allowance
= Support

= SLA

= CDN network quality

Build performance (prioritization)

Check out pricing matrixes of the most used providers:

= AWS

= Azure

= Gatsby Cloud
= |ayer0

= Netlify
= Vercel

Support

Setting up Jamstack sites is usually very simple and you likely won’t need to
interact with support. However, with larger sites, you’ll likely want an SLA and

a guaranteed response time. This aspect is very easy to check—just ask a specific

question, see what responses you get, and how quickly you get them.

Reliability

All providers host the Jamstack sites on a CDN, so even if one node fails, the traffic
gets rerouted to a different node, and the site remains operational. That alone
greatly improves the reliability of site hosting. To verify each provider’s reliability,

you can check their status pages:

= AWS

= Azure

= Cloudflare

= Gatsby Cloud
= |ayer0

= Netlify
= Vercel

https://aws.amazon.com/amplify/pricing/
https://azure.microsoft.com/en-us/pricing/details/app-service/static/#pricing
https://www.gatsbyjs.com/pricing/
https://www.layer0.co/pricing
https://www.netlify.com/pricing/
https://vercel.com/pricing
https://status.aws.amazon.com/
https://status.azure.com/en-us/status
https://www.cloudflarestatus.com/
https://status.gatsbyjs.com/
https://status.layer0.co/
https://www.netlifystatus.com/
https://www.vercel-status.com/

Server,
serverless,
security

Any large Jamstack site needs a server. There’s always
something that needs dynamic server-side processing,
like form submissions, personalization, search, and so
on. The big difference is that, in the past, we hosted

the website as a bundle on two or more servers behind

a load balancer. With Jamstack, every piece of dynamic
functionality is single-purpose, self-sustainable, and
therefore can be hosted and scaled separately.

App App

e e
Forms Search Forms Search
handler handler handler handler

\ J \ J
e

- - -
Integration | | Integration Integration | | Integration
#2 # #2
J o\ J

J .

Load balancer

Server

Easy logging and debugging

Has access to all valuable resources
like databases, CRMs, payment
gateways, and other systems that
are necessary for the company
processes

Access keys stored within the server

Scalable as a whole (scale-up,
scale-out)

Deployed as a whole

More attractive to hackers as it
covers a larger surface area and
represents a single entry point into
company data

Ve e Ve
Forms
handler

Integration
handler

AN AN

‘ Search

CDN

Serverless
Has very limited access to only
a single resource
Access keys stored outside
Scalable separately
Deployed separately

More complicated logging across
multiple functions

Harder debugging

Integration

,/

With servers, we were used to looking at resources specifications and possible scaling

options. With serverless, the scaling is handled automatically, but there are other

aspects we need to keep an eye on:

13

Cold starts

When a serverless function doesn’t process any request for some time, it gets

suspended. It’s a way to save resources. Depending on the provider, it takes about

5-30 minutes before a function “goes to sleep.”

https://mikhail.io/serverless/coldstarts/big3/

14

What’s more important is how long it takes the function to wake up. According
to the conducted tests in the linked article, it’s <1s for AWS, 0.5-2s for GCP, and

unimpressive 5s for Azure provided you’re running the functions on Linux.

Note: Cloudflare claims their workers are always on and don’t suffer from cold starts.

Note: Netlify and Vercel use AWS for serverless functions.

Maximum execution time

Because serverless functions are single-purpose blocks of code, you should not
experience problems with overtime. But if you’re using them to solve other tasks like
data transformations or integrations with other systems, their typical limit of 10-20s

per run can become a bottleneck.

Memory limit
Similar to the previous point, serverless functions are limited in their usage of server
memory. Typically it’s around 1GB of memory and it should be sufficient for the vast

majority of use cases.

Pricing
You typically pay for the number of executions, but higher tiers may give you a more

generous execution time or memory limit.

Used platform
Most often, functions are deployed separately. On Azure, you need to deploy them in

bulk as a web application, which means you’re also scaling them that way.

Caching

Most providers offer some form of caching the response of a function under specific
circumstances—no auth, you provide the right caching headers, etc. This is useful for
general data queries from external systems, like getting data of products in a specific

catalog category.

Location

Functions typically run on your provider’s server in a single specific data center. Some

providers including Cloudflare and Netlify also offer functions that are executed on the

edge, that is, on each server of their CDN and much closer to your visitors. This is useful

for any time-critical processing like A/B testing and personalization (see the dedicated

chapter in this ebook).

https://workers.cloudflare.com/
https://www.lambrospetrou.com/articles/battle-of-jamstack-platforms-netlify-vercel-aws/
https://www.netlify.com/products/edge/edge-handlers/
https://www.netlify.com/products/edge/edge-handlers/

Search

Depending on where you’re sourcing data from, some
headless CMSs like feature basic full-text search
over content items. This works for simple websites or if your
content model follows a web-centric approach. However, as
websites grow, editors start reusing more and more content,
and if the content model respects the website structure, it
will quickly become a bottleneck. On the other hand, if the
content model and website structure don’t match, the search
capabilities of headless CMSs stop being effective. And that’s
a good thing—the content model should primarily support the
work of content editors and ensure proper content reuse.

https://www.contentful.com/developers/docs/references/content-delivery-api/#/reference/search-parameters/full-text-search

A working approach that scales is to use an external search provider like Algolia or Azure
Cognitive Search. They follow the microservices trend—are the best-of-breed tools for
the job—and allow you to build search indexes based on the website structure rather
than the content model. Both of the mentioned providers also constantly improve search
algorithms with Machine Learning, so they don’t just use density-based searching like
many CMSs but allow search on your site to understand the context of what your visitors

are looking for and provide a higher level of search result accuracy.

Headless CMS Website
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
| .
I
: 1 ‘ .
I

! Landing page | \ Landing page i

I I |
! Title I I Title I
i ! ' I
i ! ' 1
| Teaser : i Teaser 1
1 ! !
1 Code block ! ! !
I Body ! ' Body I
I Language | | !
I

! 1
| p ~ | | i
! Code | Authors) l | Authors’ names |
1 ~ J 1 1 I
I

I I
: URL slug 1 1 URL :

I I I
I

I I
| | | |
[E— ! | |
! Quote ¢ I ! /

—_— I \ ,

| Author Author N
I
I Name !
I Text !
I Bio i
! I
! A\ / I
I

The diagram shows a typical landing page that consists of reusable content pieces. Only
the landing page has a URL, so if the result of a search query contains any of the used
content items, we want to navigate the user to the landing page URL. We achieve this by

flattening the content structure to a web-centric search index.

Headless CMS Algolia search index

| |

I 1 !
| | i |
: Code block #1 Ebook landing page I : Ebook landing page I
I I
| c# Title ! | Metadata !
| | i i
! Console WeiteLine... Teaser ! ! Content '
I
! ' ! Ebook landing page I
! Body ! | '
! I ' Title + Teaser + Body I
I I |
! Code block #2 \ I | |
I I 1
! c ! ! I
1 I ' 1
1 I ' 1
! Roturmoutput.. UBL slug ! ! w
I
1 I ' 1
I I ' 1
I

I | |
I | | |
! Quote #1 N I ! I

- I

I
: Scott Hanselmann Author \ : : '
I
! Ondrej Polesny ' ' |
| NETis coolt ! | !
' Ondre started ! ' |
programming... ! : Ondirej Polesny I
/ I

I I
I

) I I
I

I I
I

— | I
I

i I
I

, .

16

https://www.algolia.com/
https://azure.microsoft.com/en-us/services/search/
https://azure.microsoft.com/en-us/services/search/

In this flattening example using Kontent and Algolia, we process all (including nested)

content items into searchable blocks that contain content displayed on the page.

const content = await kontentClient.getAllContentFromProject();

const contentWithSlug = content.filter(item => item[config.kontent.slugCodename]);

const searchableStructure = kontentClient.
createSearchableStructure(contentWithSlug, content);

createSearchableStructure(contentWithSlug: ContentItem[], allContent:
ContentItem[]): SearchableItem[] {
const searchableStructure: SearchableItem[] = [];

for (const item of contentWithSlug) {

let searchableItem: SearchableItem = {
objectID: “${item.system.codename} ${item.system.language},
id: item.system.id,
codename: item.system.codename,

content: []

b
searchableItem.content = this.getContentFromItem(item, [],

allContent);

searchableStructure.push(searchableItem);

return searchableStructure;

17

https://github.com/Kentico/kontent-example-integration-algolia/blob/d16407329df78749a685caad07a005121d0d1c46/src/lambda/algolia-init-function.ts#L54

The flattened data are submitted to an Algolia index, which is configured to search

through content.contents, content.name, and name fields:

async setupIndex() {
let result = await this.index.setSettings({

searchableAttributes: [“content.contents”, “content.name”, “name”],

attributesForFaceting: [“content.codename”, “language”],
attributesToSnippet: [‘content.contents:80°]
P.wait();

This index also supports multilingual search through facets and returns 80 characters of

content around the found match.

Algolia is an external system, so all updates leading to partial or full search index rebuilds
are typically handled by webhook notifications. Those updates include all used content

items, even those that are reused and only added/removed from the parent page.
The front-end implementation uses an API to fetch search results from the search

provider’s network. To speed up development, Algolia offers InstantSearch.js library that

contains already implemented customizable components with search functionalities.

18

https://github.com/Kentico/kontent-example-integration-algolia/blob/d16407329df78749a685caad07a005121d0d1c46/src/lambda/utils/algolia-client.ts#L19
https://github.com/Kentico/kontent-example-integration-algolia/blob/d16407329df78749a685caad07a005121d0d1c46/src/lambda/utils/algolia-client.ts#L19
https://www.algolia.com/doc/guides/building-search-ui/what-is-instantsearch/js/

Headless CMS

Any large website is serviced by a team of content editors
and it’s likely that the content is not exclusively created
for the web channel only. Jamstack and the related
tooling represent just one aspect of choosing a headless
CMS—even though your client may only require a single
channel for now, a website. Storing content in a headless
CMS has the potential to free you from any content
migrations in the future. It withstands any front-end
changes and redesigns, technology changes, and so on.

Any headless CMS will do a good job when storing content for simple blog sites, but as the

site grows, make sure to watch for:

= Open/closed source
Most enterprise-level systems are closed-source. That doesn’t necessarily ensure top
quality and security but gives you a single entity that you can have a commercial
relationship with. That entity is then responsible for the reputation of the product, which

results in better service, higher reliability, faster responses, and quick bug fixes.

= Hosting
Headless CMSs offer the following types of hosting:

= Self-hosted
You are responsible for hosting and maintaining the solution. That also means solving
performance, scaling, geo-redundancy/disaster recovery, CDN, monitoring and
incident reporting, WAF, security hardening for any outside communication; the list

goes on and on. In most cases, you almost certainly don’t want to do it.

= Managed hosting and laa$S
You host the CMS in the cloud using VM (laaS), or the CMS vendor provides the
hosting space for you (managed hosting). Some points from the previous paragraph
are tackled by the provider (depending on the offering), some are still up to you, as

you’re the owner and maintainer of the space.

= SaaS
You register, select a plan, and use the product. Everything else is handled
by the vendor.

Note: Some CMSs like Sanity.io are a hybrid that requires you to self-host the

content management front-end application.

The right choice always depends on the specifics of each project. However, we’re
talking about large sites and microservices—you will need to focus on the front-end
development, reliability of integrations, and communication between services.
SaaS will handle the scaling, deployments, upgrades, security, and other rather

unenjoyable tasks for you.

= Developer experience
There is always an API, but building a site is always easier with an SDK or tools built

for your target platform. Some tools like Next.js or Nuxt can work with any data

20

https://kontent.ai/blog/a-how-we-do-disaster-recovery?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack

21

source, but frameworks like Gatsby, Gridsome, Jekyll, Statiq, and others require

special plugins.

“dependencies”: {
“@kentico/gatsby-kontent-components”: “*7.0.0”,
“@kentico/gatsby-source-kontent”: “7.0.0”,
“@kentico/kontent-smart-link”: “2.1.0”,

“@rshackleton/gatsby-transformer-kontent-image”: “*2.1.0”,

“gatsby-plugin-image”: “*1.11.0”

Package.json showing used plugins that simplify sourcing data from
headless CMS Kontent

Also, pay attention to images and other media files. On large sites, the assets can
easily grow to several GB that will be provided through the CMS’s CDN (provided
you’re using SaaS). Most providers also offer an images APl and SDK that help
with preparing your assets for responsive sites or directly integrate with the target

platform capabilities, e.g., Gatsby Image.

https://www.gatsbyjs.com/docs/how-to/images-and-media/using-gatsby-plugin-image

= Content editor experience
Editors are used to traditional monolithic web-focused CMS platforms with
WYSIWYG page editors which go directly against the content-first approach.
However, the headless CMS needs to provide a friendly environment because if the

content editor’s journey is tough, the project will fail due to their lack of engagement.

Oftentimes, editors are looking for the simplest features like keyboard shortcuts. But
as their team grows, they will need tools for collaboration like inline commenting, the
ability to add suggestions, safe real-time editing with auto-saving, advanced content
workflow capabilities, and—of course—versions history and the ability to compare
between versions. Having a personalized dashboard, a list of recently edited items,

and a content calendar also helps them be productive.

= Visual website editing
Editors like to work visually and typically prefer to see their changes framed in the

context of the website before publishing. There are three levels of this support:

= Preview
There is a preview button that takes editors to a predefined URL on a preview
version of the site that is either server-side rendered (Next.js), client-side rendered
with Preview API (Nuxt), or incrementally rebuilt after every content change
(Gatsby with Gatsby Cloud).

22

23

= Links back to the CMS
On the preview version of the site, editors can see “Edit” buttons that take them
directly to the editing interface of the backing content items and thus freeing them
from having to find the respective content item in the CMS. This feature is available

in many leading headless CMS platforms; the screenshot below is from Contentful.

= Visual editing
Editors see the Jamstack site directly within the CMS and can edit respective

content items and components without leaving the Ul.

Example: Kontent’s Web Spotlight, Storyblok

2y

= Performance & reliability
Most modern headless CMSs run in the cloud as multi-tenant applications.
However, if your website grows or your client requires it, the vendor should
be able to provide dedicated architecture. Jamstack sites that are statically
generated are inherently more immune to data source failures, but the delivery
of your content should still be handled by a CDN (very relevant for assets) so that

even if the data provider fails, your website stays operational.

= |ntegrations & data handling
Any larger site requires data and information from multiple sources or needs to

communicate with multiple cloud services.

= External communication
Every headless CMS features webhooks for triggering actions of external

systems. So make sure to check their granularity, reliability, and performance.

= Ul extensibility
YouTube videos, Bynder images, Shopify products—editors need to
work with a lot of different data types. The headless CMS should feature
such integrations out of the box or provide a way to extend its Ul to add

such support.

25

= Management API
Serverless functions, form handlers, integrations—they all need a way
to fetch and update data in the headless CMS. Typically, it’s a Content
Management API that is complemented by SDKs for multiple platforms.

Check the scope of the APl to make sure it supports your use cases.

= Vendor locking
Clients who historically invested a lot of money into implementing legacy
solutions that locked them for many years with a single vendor are now
sensitive about this aspect. A good headless CMS features import/export
functionalities (ideally into JSON) that allow you to take your data to another

vendor should you need it.

= Migrations
Hardly any project starts on a green field. The headless CMSs usually
feature Content Management APl and supporting tools to make data

migrations possible.

Security
In the scope of security, large projects typically require features like SSO, flexibility in
roles and permissions, and security certifications such as ISO 27001 and SOC 2 Type 2.

As the number of users in the CMS grows, project managers require an Audit log to

see what changes were done and by whom.

26

Support

Useful support engineers can save a lot of time in development, especially if they’re
experienced with the Jamstack tools you’re using. The vendor typically guarantees
response time within hours. To test this, simply ask a question and check what

responses you’ll receive and how soon they’ll arrive.

Pricing

There are more or less three levels of pricing:

= Free
Typically self-hosted and open-source solutions.

Examples: Strapi

= Low-cost solutions ($10-$500/mo)
Typically products built by individuals or small start-ups. They’re great for small
to mid-size projects but may not keep up with you if your site and requirements
grow quickly.

Examples: Prismic, Graph CMS, Storyblok

= Enterprise solutions ($§999+/mo)
CMSs that are pure headless and ready to support large projects and
organizations. They are prepared to fulfill requirements for dedicated architecture,
have ISO certifications, offer SLAs, and can help you succeed by providing

consultation support.

Examples: Kontent, Contentful, Contentstack

These are the typical differentiators that affect pricing:

= # of project

= # of users

= # of roles

= # of content types

= # of content items

= # of languages

= Allowed bandwidth (and applied FUP)

= Additional services like support, SLA, etc.

Additional functional

features.

Headless CMS is the best-of-breed system for content management. Nevertheless,

many developers expect it to handle other functional requirements of Jamstack

sites, like forms management, email sending, tabular data management, and so on.

Headless CMSs don’t support any of these because they shouldn’t. If your project

requires such functionalities, try to pick a specialized service that fulfills your use case.

See the table below that lists a few providers per each category:

Forms

Email sending

Tabular data

Custom Analytics

27

Netlify Forms
Form.io

Basin
JotForm
Your CRM (like Salesforce)

Sendgrid
Mailchimp
Mailjet

Serverless databases
- AWS Aurora
- Cosmos DB
Blobs
- AWS §3
- Azure Blob
Static JSON files

Google Tag Manager

Custom Event

Netlify Analytics
Segment (CDP

Tracking (Google Analytics)

https://www.netlify.com/products/forms/
https://www.form.io/
https://usebasin.com/
https://www.jotform.com/
https://help.salesforce.com/s/articleView?id=sf.pardot_form_handlers.htm&type=5
https://sendgrid.com/
https://mailchimp.com/
https://www.mailjet.com/
https://aws.amazon.com/rds/aurora/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://www.google.com/aclk?sa=L&ai=DChcSEwjMvazdrqbyAhXR5HcKHQ4WA7oYABAAGgJlZg&ae=2&sig=AOD64_1bboR-6kF7Gn1WlXosE-devDhTzg&q&adurl&ved=2ahUKEwjln6XdrqbyAhUVPuwKHc6oAG8Q0Qx6BAgDEAE
https://azure.microsoft.com/en-us/services/storage/blobs/
https://developers.google.com/tag-manager
https://www.analyticsmania.com/post/how-to-track-custom-events-with-google-analytics-4/
https://www.netlify.com/products/analytics/
https://segment.com/

Multiple
languages

Multilingual support is a very underestimated feature and
requires a lot of support on both the data source and site
implementation sides. Most often, Jamstack sites are
built with content from headless CMSs and their job is to
fully support the multilingual capabilities listed below.

= Multiple languages
The support for multiple languages needs to go beyond simple culture codes. There

are dialects and regional specifics you may need to deal with as well as define their

fallback language.

29

Content management
On large sites with a lot of content, you will often deal with edge situations related to

languages and translations, e.g.:

= A content item references another content item that does not exist in the current

language. Does that fulfill a “required” condition?

= Rich text element links a page that is available only in a specific language, not the

general fallback. Is this OK, and how are you going to render it on the website?

= A personalization variant of a component is not translated into the current
language. Should you exclude it?

= Typically, these sites also have many users who maintain content in specific
languages, and if we’re talking about corporate sites, each country site may

have different requirements for languages. The used CMS needs to be capable of
granularly setting permissions.

The implementation in Jamstack is the easier part. Every CMS gives you the ability to
filter content by language in its APl or SDK. If you’re using a front-end framework that

requires a special plugin, verify how it handles translations and fallback languages.

30

For example, if your site is built with Gatsby, the Kontent source plugin adds two

language-related fields to every content item - preferred_language and

system. language:

“node”: {
“elements”: {
“title”: {
“value”: “Accounts Lek 24/7 cutting-edge support Spring non-
volatile”
¥
1

“preferred_language”: “cs-CZ”,

“system”: {

“language”: “en-US”

If you filter for {preferred_language: {eq: “cs-CZ”}} in the GraphQL query, you
will get content items in the Czech language (if available) or their English fallbacks.
The actual language of every item is in the system.language field, so you can decide

whether or not to use it.

This distinction also allows you to inform website visitors that a linked item is only

available in the fallback language:

31

https://github.com/Kentico/kontent-gatsby-packages/tree/master/packages/gatsby-source-kontent#readme

Authentication
& gated content

First of dll, let me explain two terms related
to protecting assets on sites:

Authentication: Identifying a visitor
Authorization: Deciding whether a user can access

a specific resource

In the scope of Jamstack sites, it’s important to know whether
we want to just authenticate visitors or also authorize them.

Typically, we aim for one of the following use cases:
= User profile, user data forms & other highly personal pages

= Content personalization based on rules (see the dedicated section below)

= Gated content

User profile, forms & other
highly personal pages.
As | described in the Performance section, it doesn’t make sense to pre-build every

single page for large sites. With user profiles and other highly personal pages, it’s

almost impossible due to frequent changes in the data set. You're left with three options

for fetching data:

= Server-side on demand
With Next.js incremental static regeneration or Netlify’s DPR, these pages can
be rendered on demand. Rendering happens on the server, and the client waits for

the response.

Example: public profile page of a user, list of recently played games on a gaming

portal, etc. Those are all pages that are user-specific, but still public.

This is a code example from Next.js showing incremental static regeneration:

export async function getStaticProps({ params }) {

return {
props: {
userData: await getUserData(params.urlSlug)

1

revalidate: 60

33

= Client-side
The particular page acts as a little SPA. It is served as a static page with JavaScript
code that makes an APl request on every page load. As soon as the server responds

with data, we render the page.
Example: user data management page, order history page, etc.

This is a code example from Next.js showing gathering data dynamically on the client:

export default () => {
const router = useRouter()
const [isReady, setIsReady] = useState(false)
const { userId } = router.query

// get orders by UserID on client
const { data, error } = useSWR(() => userId, getOrders)

if (isReady && data && Array.isArray(data))
{

// render HTML

34

= Server-side at request time
The use case is the same as for the client-side, but here it’s the server that fetches the
data at request time before responding. That causes a bit slower TTFB but removes

the additional async request on the client.

This is a code example from Next.js showing server-side data fetching:

function Page({ data }) {
// Render data...

// This gets called on every request

export async function getServerSideProps(context) {
const { userId } = context.query
// Fetch data from external API
const data = await getOrders(userId)

// Pass data to the page via props

return { props: { data } }

export default Page

The right solution highly depends on the use case. Nowadays, the trend is to go with
server-side data fetching on the edge, as it removes the additional logic and processing
on the client and saves one round-trip to the server. However, if the data on the page
requires authentication, you’ll need to go with API calls anyway and first ensure that the

user is authenticated and has proper authorization.

35

Gated content.

A common example of a gate is an age-gate, often used when a user wishes to
access products or content that require them to be older than a certain age, e.g., for
purchasing alcohol. Gates are often used in lead generation. The intention is that

a report or article is enticing enough for a user to provide contact details.

To implement gated content, we always need a serverless function or another form of
server processing power. Both Next.js and Gatsby support serverless functions out of

the box; for any other framework, you can just use them separately.

s bl'".b Headless
ubscribes
to newsletter E] CMS
/
5.
Gets gated
/ content
6.
Displays
gated content
1. 0O
@ Wants to see
gated content Q

Static site Visitor

36

The serverless function needs to solve the following tasks:

= Verify that the user has completed the required action.

// this checks whether the user provided an email address

const data = req.body.email;

if (lemail) {
return res.status(400).send({ message: ‘Email not provided.’ });

= Perform the desired action with user data (subscribe to a newsletter, verify the

payment, etc.).

subscribe(email);

= Provide the gated content.

// get gated content from the headless CMS
const contentItem = await getGatedContentItem();
return res.status(200).send({

gatedContent: contentItem.gated_content.value ?? €,

s

The gated resource can come from the same project within the headless CMS as public

content or be stored in separate storage to protect project IDs and/or access keys.

If we want the gated content to be indexed, we need to take three more steps:

= Recognize Googlebot on the front end and provide the gated content directly.

// If we think this is a Google request then fetch content immediately

const isGoogle = navigator.userAgent.toLowerCase().includes(‘googlebot’);

if (isGoogle) {
const content = await fetchContent({ animal });

37

= Recognize Googlebot in the serverless function and provide the content.

const isGoogleAgent = req.headers?.[‘user-agent’]?.toLowerCase()?.
includes(‘googlebot’) ?? false;
if (isGoogleAgent) {
let verified = false;
try {
// Verify Googlebot via reverse DNS lookup.
const ip = (reg.headers[‘x-forwarded-for’] || req.socket.remoteAddress) as

string | undefined;

verified = await verifyGooglebot(ip);
} catch (error) {

The Googlebot verification is based on the known IP addresses; the full implementation

is available on GitHub.

= Mark the content as paid using schema.org attribute isAccessibleForFree.

You can see the complete working example of gated content with further details here.

38

https://github.com/jcowley/googlebot-verify
https://github.com/jcowley/googlebot-verify
https://schema.org/isAccessibleForFree
https://github.com/rshackleton/nextjs-gated-content
https://medium.com/front-end-weekly/gated-content-and-the-jamstack-is-it-achievable-of-course-6408f1ccf7e8

Personalization
& A/B testing

Many developers see Jamstack as a good fit only for
small sites because they don’t see how personalization
and similar features can work on a static site. In this
chapter, | will explain both personalization and A/B
testing, as they are very similar to a certain extent.

Personalization.

There are two types of personalization:

= User-specific content
When you want to display personalized greetings, show the customer’s last purchase

with a link to “purchase again,” and so on.
Example: “Hey Ondrej, your last visit was: 1 week ago from France (IP: 75.122.14.151)”
= Persona and group-specific content
Personalization is based on the information you know about the user but is
applicable to a group of people, not an individual.
Example: product recommendations, banner variant, etc.
Both need a server, serverless function, or client-side JS. The user-specific content

requires you to know the specific user—they need to be authenticated or come to the

site via a special link that contains their identifier.

The personalization based on persona or group has three parts:

1. First, you need to collect some data about the user. Typically, you monitor what they
do on the site via a tracking script. For example, the user can be browsing through

home printers or looking at gaming consoles.

© A

/gaming

/gaming/playstation-5
/gaming/playstation-l-slim
/gaming/playstation-vr-megapack

I

40

https://www.freecodecamp.org/news/how-to-make-static-site-dynamic/

2. Then, when you’ve recorded enough activity, you evaluate this data and draw some

3.

1

conclusions about the user. In this example, you’d assign the user to “interested in
printers” and “interested in gaming” personas respectively.

/gaming

/gaming/playstation-5 O
/gaming/playstation-4-slim Q
/gaming/playstation-vr-megapack Interested

in gaming

And finally, you can personalize the content on your site. Typically, you prepare
multiple variants of some content and assign them to your personas. For example,
a “recommended product” box will be showing HP Laser 107w for the “interested in

printer” persona and a PlayStation for the “interested in gaming” persona.

o000
Personalized
variants
Random o)
product .
You may like)

Interested
in gaming

Playstation 5 Playstation 5

HP Laser

107w

Of course, in reality, personalization engines, including Ninetailed, Uniform,

Salesforce Pardot, and others, are equipped with advanced techniques to understand

the user and properly guide them using personalization to a successful conversion.
The terminology and approach of each of these platforms are a bit different, but this

is in general how it works.

Define Add personalized

rules content
ST TTTT T r e N
! i
1 :
! I

Data Personalization N ! Personalized | Headless
evaluation C platform — Logic component ! Content CMS

'
i
'
'
i
1

\
’

Browsing J{
data
o

@) Q

Visitor

So how we do this on a static site:

= Client-side with async requests
Once the page loads your code, the browser makes an async request for the
personalized content. Typically you ask the tracking system (like Pardot) for the
identification of the content that should be displayed:

< ="text/javascript” ="https://tracker.kontent.ai/dcjs/849473/354/

dc.js?v=1627544857873"></ >

The job of the tracking system is to identify the source of the request (specific user) and

evaluate what type of content should be displayed. It responds with the content ID:

document.write(“the_state_of jamstack 2021 report”);

42

https://ninetailed.io/
https://uniform.dev/
https://kontent.ai/blog/static-site-personalization?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack

43

Then the browser makes another request to the used content storage (headless

CMS), fetching and displaying the content:

fetch(“https://deliver.kontent.ai/{projectId}/items/the_state_of jamstack_2021_
report”)

then(function (response) {

return response.json();

b))

then(function (data) {
var html = getHTML(itemToDisplay, data);
container.innerHTML = html;

b))

Headless
CMS

2. JSON data
Get content

The_state_ 3.
of_jamstack_ Personalized
2021_report website

eoe

N o

Personalization @ ()

platform
Visitor

1
What should Client-side
be displayed? JavaScript

The last step can be eliminated by pre-rendering all content variants into the static

page and only displaying a single variant once we know which one. Find out more

about the technical specifics or overall personalization process on the Kontent blog.

Fully client-side
Some providers like Uniform allow you to move the tracking, evaluation, and
personalization to the client-side completely. Once you define the rules, the logic

is bundled with your site’s implementation and executed on the client.

https://kontent.ai/blog/static-site-personalization?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://kontent.ai/blog/kontent-loves-personalization?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://docs.uniform.app/optimize/dev/content-management/kontent/getting-started

Ll

Headless
CMS

|

Website SN Per lizati
implementation platform

Build server

- O]
——— IEW a)
- JS personalization .
ror-ar—s bundle Visitor

Client-side

Uniform provides a special Ul component that handles all the steps automatically;

you only need to provide the content variants:

export const PersonalizedHero = ({ item }: { item:
PersonalizedHeroData }) => {
return (
<Personalize
variations={item.heros}
component={Hero}

trackingEventName="heroPersonalized”

loadingMode={PersonalizedHerolLoading} // specifiy a

component for a potential loading state
/>
)5
b5

There are no additional requests necessary apart from the site’s JS bundle.

The personalization rules are managed in the Uniform Ul, and with every change, the

system triggers a new site build using a webhook. Check out this guide in Uniform’s

docs which describes how this type of personalization works in detail.

https://docs.uniform.app/optimize/dev/content-management/kontent/fetching-data#use-kontent-data-with-the-personalize-component
https://docs.uniform.app/optimize/dev/architecture/personalization
https://docs.uniform.app/optimize/dev/architecture/personalization

45

Server-side/Edge
Both types of client-side personalization have one disadvantage—the async requests
take some time. How much depends on your visitor’s latency and device speed, but

we’re talking hundreds of milliseconds even in ideal cases.

These days, you’re able to leverage serverless functions that run on the edge, much
closer to your visitors. They act as a proxy server—the request for a static page
goes to them, they intercept the response and post-process the already generated

page—they choose which variant of the pre-generated ones should be displayed.

I I
Generated L=
static pages - JS personalization

bundle

Choose which

3. 5. component variant to use
Requests Personalized
a page page
I' - '; JS personalization
O _ _ « —a bundle
Visitor .

They effectively do the client-side job on the CDN and use a small cookie to identify
the visitor. You can also use a hybrid approach that first personalizes on the edge,

and once the bundle is loaded, continues on the client-side.

A/B testing.

A/B testing is very similar to personalization, but the evaluation logic is replaced with

a simpler decision logic. You can run an A/B test on the whole website traffic splitting it into
equal halves, or you can decide to test only people from the US and so on. The important
thing is to always show them the same variant once you’ve shown them one—this is

achieved by storing a small cookie on the visitor’s browser.

A/B testing is simpler to implement than personalization because you don’t need to
know either anything or very little about your visitors. That’s why many Jamstack
hosting providers offer tools for A/B tests, like Netlify that lets you split the traffic
between two versions/branches of your site or LayerO that also supports splitting

traffic between multiple sites.

Branch ‘main’ Branch ‘cool’

O ©) ©) ©) O
QO))) O
‘main’ ‘cool’ ‘main’

conversion

o

=

Google Analytics

46

https://docs.netlify.com/site-deploys/split-testing/
https://docs.layer0.co/guides/split_testing

The results of such testing come from a specified goal, typically a conversion. On each
version of the page, you need to adjust the Google Analytics tracker or similar code

that logs successful conversions:

>
ga(‘send’, ‘pageview’, {
‘Branch’: “{{ getenv “BRANCH” }}’

s
</

Note: This code sample comes from Netlify docs and shows how to include the branch

name in the tracked conversion—in this case, a simple page view.

You can also handle A/B tests purely on the client-side with tools like Google Optimize.

Check out this article for more info.

47

https://docs.netlify.com/site-deploys/split-testing/#send-to-google-analytics
https://support.google.com/optimize/answer/6211930?hl=en
https://kontent.ai/blog/kontent-loves-ab-tests?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack

E-commerce

All the previous sections about performance, search,
personalization, and so on come together here.
E-commerce requires you to combine all the features of
the modern web to create the best visitor experience.

All articles about e-commerce tell you that the conversion ratio decreases exponentially
with long page loads. Pre-generated sites bring performance out of the box, so it seems

like a great fit for e-commerce. However, there are a few things you need to consider:

Product catalog

Shopping cart

Checkout process

Payment

With e-commerce, the situation is more complicated than with other services. For

example, you expect a hosting provider to build & host your site just like you expect
a search provider to maintain a search index and give you an API or tools to use on
your site. E-commerce, or headless e-commerce, providers don’t all offer the same

type of integration.

= Monoliths
If your client is already using a provider like Shopify, Prestashop, Magento, or
a similar custom solution and they are happy with it, you’ll likely be looking at ways

to integrate these solutions with Jamstack.

= Buy button
The platform lets you define a button or a larger section of products that you can
add to your site using a generated code block. It works either client-side (similarly

to an iframe) or is hosted on the provider’s infrastructure and uses redirects.

Your

E-commerce store
platform Redirect product 1

oo) BUY
. Checkout: '
! |
! Name: .
! . @)
! Street: . Q
1 1
! , Customer
1

' Your
: 1 store

1
: ! Thank you
! h for your
' ! purchase :)

1
.. 7’

Redirect
back

Example: Shopify buy button

49

https://www.shopify.com/buy-button

= Storefront
If you need more freedom or feel like the JavaScript site add-on is not good
enough, you can use Storefront—a layer, an implementation, on top of a specific
tech stack that connects e-commerce platforms and front-end frameworks. It’s

like a plugin that provides e-commerce functionalities.

Your store implementation

Your

!
1 1
| Storefront ! store
! |

l
: Shopping \ product 1

!
| et BUY
! 1
| :
| |
l !

i
1 |)
1 ; a
! !

Plugin /' Plugin | Plugi
: ugin ugin ugin ! Customer
| 1 Your
| S ! store
Thank you
E-crmfmerce for your
platform purchase :)

Make sure to select the one that fits your tech stack. Very popular are Vue
Storefront that extends Nuxt.js and connects with almost all e-commerce

monoliths, Next.js Commerce and React StoreFront if you’re using React and

Next.js, and Gatsby plugin for Shopifuy.

= Custom solution
If the monolith your client is using is not supported by the storefronts or you want to

build the front end yourself, you can always use its APl and connect it manually.
= Checkout add-on
A good solution if you’re looking for a simple way to sell just a few products. It’s

typically a simple buy button that redirects your visitors to a checkout page hosted
by the provider.

Example: Stripe Checkout

50

https://www.vuestorefront.io/
https://www.vuestorefront.io/
https://nextjs.org/commerce
https://www.reactstorefront.io/
https://www.gatsbyjs.com/plugins/gatsby-source-shopify/
https://stripe.com/docs/payments/checkout

51

Full add-on

The integration is done by a client-side JS bundle that you add to your site:

< ="text/javascript” ="{YOUR_API_KEY}” ="https://cdn.

snipcart.com/scripts/snipcart.js”></

The JS code adds the shopping cart and checkout functionality in a component that

slides over your website when needed.

In the case of Snipcart, all products in your store need to be rendered with special

HTML attributes defining their identifiers and prices:

=’button” =”snipcart-add-item”
=”Headphones”
="200.00”
=))42))

="https://snipcart.com/headphones”>

Add to cart
</ >

https://snipcart.com/

This is all happening on the client. Before the order is processed, Snipcart goes back
to your site (data-item-url) and checks the HTML attributes of ordered products if
they match the submitted order.

Another provider, Gumroad, requires you to store the products within their system,

so the checks are done on the provider’s side.

Example: Stripe, Gumroad

= API-first
Earlier, | mentioned monoliths that expose an API, but there are also pure headless
providers that are API-first. The well-documented APl and sample apps for multiple

platforms are a standard, but some also provide GraphQL endpoint.

Your store implementation
Your
store

product 1
Plugin Plugin Plugin

‘

. \

.]

. '

! 1

! | BUY

. '

! 1

1 o !

1 S !

' K] Shopping '

| : :

! | O
'

' s)

Your Customer
77777777777777777777777 store

. ~

| “ Rsiolae

1 for your

'

'

]

'

'

'

| purchase :)

E-commerce platform

Example: Commercetools, Commerce Layer, Slatwall

= Custom solution
In cases when monoliths or API-first platforms don’t suit your needs, you can
build the solution yourself. Yes, it will cost you a lot of development time, as you
need to address all the aforementioned aspects (product catalog, shopping
cart, checkout process, and payment) on both fronts—on the front end and back
end. Even so, this approach is not that rare, and I’'ve seen it successfully run
in production multiple times. Take a look at the following diagram showing an

architecture built by one of our clients:

52

https://help.gumroad.com/article/135-setting-up-the-gumroad-overlay-on-your-website
https://snipcart.com/
https://help.gumroad.com/article/135-setting-up-the-gumroad-overlay-on-your-website
https://docs.commercetools.com/api/graphql
https://commercetools.com/
https://commercelayer.io/
https://publicapi.slatwallcommerce.com/?version=latest

Hosted on DigitalOcean

, Order management : Legacy

! system ! system

1

' (es .

! 1

! !

! @ |

, PostgreSQL .

! : Products

¢ Shopping carts Checkout ' Prices

1 Abandoned carts orders :

| i

. . | Your

. Apollo middleware : store

!

\ R product 1

BUY

@ graphQL O
Staff Customer

If this is relevant to you, I’d recommend this article about combining data sources

in a middleware layer that separates concerns and simplifies the front-end

implementation.

| also recommend the Headless E-commerce guide published on Snipcart’s blog that

features this nice comparison:

Just keep in mind that a row full of checkmarks does not mean it’s the ultimate
choice. Different clients, different development teams, and mainly different budgets
since there are huge differences in pricing among e-commerce providers—these all
require a specific approach. That’s also why neither this section nor this comparison
table tell you what the best solution is. However, considering you’re reading this
book and want to use Jamstack for your projects, your best bet will likely be the API

or the Storefront approaches.

53

https://medium.com/free-code-camp/how-to-make-your-website-clean-and-maintainable-with-graphql-13fe06098656
https://snipcart.com/blog/headless-ecommerce-guide

In conclusion

In this book, | showed you that Jamstack can be used for
large projects. Just like any other way of building websites,
it has its disadvantages and can’t be blindly used for
everything. Especially larger websites with specific features
require you and your team to evaluate the pros and cons

like you would do for any typical client-server architectures
based on .NET, Java, or PHP. But the fact is, Jamstack brings
a lot of benefits including performance, security, simplicity
of development, and openness of the communities, out of the
box. And when | look at how rapidly it evolves, how static site
generators have become true website-building frameworks,
how providers race to introduce new services and improve
the already existing ones, one thing is clear—Jamstack is not
only a viable way of building websites but is also becoming

a standard and will continue to grow in that sense.

Stay in
touch.

https://twitter.com/kenticokontent
https://kontent.ai/discord?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack

Kontent.

About
Kontent

Kontent by Kentico is a cloud-based headless CMS that features first-class
integrations with all leading Jamstack frameworks and many sample apps to speed

up your development.

Kontent represents the easiest way to manage content with Jamstack by allowing
both developers and editors to focus on what they love. Developers can fetch
content via CDN-backed APl or GraphQL and process it using an open-source
SDK for their preferred platform. Editors become more productive thanks to

a personalized dashboard, multiple fully customizable workflows, and advanced

collaboration features including comments, suggestions, and tasks.

Kontent is prepared to deliver on enterprise requirements like SLA, dedicated
architecture, professional customer services, and training. In addition to that, the
platform has three ISO certifications (ISO 9001, ISO 27001, and ISO 20000) and has
passed the SOC 2 Type 2 examination.

https://kontent.ai/request-demo?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack
https://twitter.com/KenticoKontent
https://www.linkedin.com/showcase/kenticokontent
https://www.facebook.com/KenticoKontent/

The best part of the is that it gives
you freedom to choose the best-of-breed service for each of
your requirements. For content management, there are many
to choose from, but Kontent provides us with an unmatched
balance of first-class customer support, developer features
and SDKs, and market-leading collaborative editing features
more akin to Google Docs than a typical headless CMS.”

Andy Thompson
CTO, Luminary

https://kontent.ai/technologies/jamstack-cms?utm_source=ebook&utm_medium=pdf&utm_campaign=serious-jamstack

About
the author

Ondrej Polesny is Developer Evangelist at Kontent. Always interested in
problems that everyone claims have no solution, Ondrej enjoys building
the architecture of components or applications, and figuring out how all
parts fit together. He is constantly in touch with clients and the developer
community which brings him closer to many interesting digital projects

including, but not limited to, Jamstack.

Ondrej Polesny
Developer Evangelist, Kentico Kontent

Twitter:

Website:

https://twitter.com/ondrabus
https://twitter.com/ondrabus
https://ondrabus.com/

