JRebel

by Perforce

Microservices Trends
In Java Development Report




MICROSERVICES BACKGROUND

Microservices is an architectural software style where an application is built from lightweight, loosely-coupled services that allow

developers to create, test, and release different functionalities separately. The improved agility and scale microservices provide have led

to increased use within the Java ecosystem in the last several years over the traditional monolith architecture.

What does the microservices landscape look like for these

developers?

In May 2019, a survey conducted by the JRebel team at Perforce
aimed to discover how Java users have adopted microservices.
We wanted to better understand the widespread microservices
adoption and how developers are using these services within

their project scope.

The survey concluded that while there is still a lot to learn in

regard to microservices, this architecture does have a positive

impact on reducing build and restart times during development.

1 | Microservices Trends in Java Development Report

A total of 69 respondents participated in the survey, 49 of which
were using microservices in their main project and Java as their
main language. This group of 49 people make up the findings
below. The people surveyed were mostly not users of our

products, so product biases should be avoided.

The sample size is not huge and the results have a considerable
margin of error, if formally calculated. However, we believe this
serves as a valuable temperature check of this hot and rapidly-

evolving technology segment.

PERFORCE




Q: Which framework are you using for microservices?

86% Spring Boot
6% DropWizard

We asked respondents to select one from a list of

frameworks they were using for microservices, with an 2% M Micronaut
2% M Only singleton’s & Java EE 8

option to add a free-text answer.
2% M In-house service generator

+ Tomcat
S o\ s .
A significant number (86%) indicated Spring Boot as 2% B Customized framework built
their framework of choice. This response did not come on Java, .NET and Node.js

as a surprise, as Spring Boot is the fastest-growing Java
framework on the market with built-in microservices

support.

Another expected finding is that Docker has a Iarge Q: Are you using containers in your development environment?
footprint among microservices users. Docker fits nicely with
a lot of patterns and best practices that microservices are

known for. Each service should be:

61% I’'m using Docker
* Isolated. 2fhe e
« Onits own JVM. 10% M I'm using other container
¢ Able to start and stop on its own. 2% m :;;P;n:rl‘ng)]B S

Scalable independently of other services.

2 | Microservices Trends in Java Development Report PERFORCE



MICROSERVICES VS. MINISERVICES

Next, we asked respondents how many microservices they have in their main application:

Q: How many microservices do you have in your main application?

10%
6% 6%
N B
1-5 6-10 11-25 26-50 51-100 100+

Lots of people are actually using a rather small amount of microservices in their main application. Having 5 or less services in the

application hints that these might not be the “true” microservices (small and single-purposed).

A term sometimes used for that is “ " —the big monolithic app has been broken down into smaller components, but

some of the architectural constraints often associated with microservices have been relaxed (strictly one feature per service, etc.).

Whether a distinction between microservices and miniservices is actually meaningful likely depends on the user. For
development and local deployment, miniservices might be pretty similar to working with a monolithic application. For
debugging, performance testing, monitoring, or scaling the whole system, the complexity will increase immediately even if you

have just a fistful of services.

3 | Microservices Trends in Java Development Report PERFORCE



https://sdtimes.com/micro/difference-miniservice-microservice/

Q: How many microservices are you
typically modifying simultaneously?

From the Java tooling point of view, we wanted to determine whether developers
are focusing on one service at a time or consistently making changes across services.

We asked how many microservices are typically being modified simultaneously.

To build on the previous question regarding the number of microservices used in an

application, the responses here signal how small or interdependent each service is.

The median number of services worked on simultaneously was three, so the

developer tooling should make redeploying multiple microservices fast and easy.

DEVELOPMENT ENVIRONMENTS
One of the most important questions we asked was how developers see the effects
of changes in development. The intention was to gain insight into how developers

are setting up their environment when working with microservices:

* Running full applications locally (common in monolithic architectures).
* Running one or two services on a local Docker while modifying.

* Relying on unit tests and staging, skipping local deployment altogether.

The differences between these options are significant for any Java tooling.

4 | Microservices Trends in Java Development Report PERFORCE



Respondents could select more than one option between the following: locally run an automated test; run locally and validate with Postman,

Curl, etc.; restart the container with the service and validate with Postman, Curl, etc.; and push to SCM and validate on a staging server.
Most participants selected multiple answers, with an even split between unit tests vs. running apps locally.
A quarter (25%) indicated that they completely rely on unit testing and staging, known as a test-driven development (TDD).

About half of developers were taking advantage of unit tests, about half were still running the app locally. A quarter of responders didn’t run

the application neither on host machine locally nor inside Docker.

Q: How do you see the effect of your changes in development?

Locally run an automated test 57%
Run locally, validate with Postman, Curl, etc.

Restart the container with the service, validate with Postman, Curl, etc. 20%

Push to SCM, validate the application on staging server 41%

5 | Microservices Trends in Java Development Report PERFORCE



Q: How long does your build + redeploy take?

I 0-30 seconds (22%)
move from the monolith to the microservices architecture

style. Over half (65%) reported spending two or less minutes
on builds and redeploys.

Average build and redeploy times have decreased with the

30s - 1 minute (18%)

This is a decrease from the median redeploy times of our
userbase on WeblLogic and WebSphere (used in monolithic
enterprise apps), both of which are over three minutes.
1-2 minutes (25%)

Still, over half of the developers are spending more than a

minute each time they want to see the effect of their code
changes. Over the course of the day, these short interruptions

o ) 2-3 minutes (4%)
add up to a significant amount of time wasted.

Also, a third of engineers wait over three minutes for each change,

which is way too much. Tools like will still be useful in
. . o . . 3+ minutes (31%)
the context of microservices to eliminate this wasted time.

6 | Microservices Trends in Java Development Report PERFORCE



https://jrebel.com/software/jrebel/

While the time spent deploying has declined, microservices haven’t Q: How many build-deploy-validate cycles do you do per hour?
had much of an impact on the number of build-deploy-validate

cycles. In a previous survey we conducted, the median number of

cycles was three per hour. The average value based on the current

survey is 2.7 (with the median value being two). Independent of

architecture, nobody wants to do blind coding for long.

As we continue to learn more about the microservices architecture and how it assists

developers, we will also get a clearer picture on the best practices and tooling to support it.

JRebel speeds up microservices application
This survey provides preliminary insight into how this up-and-coming architecture is being development, immediately reloading changes

employed and what impact it is having on how engineers do their work. and eliminating the need for redeploys. To learn

more, request a free trial of JRebel today.
Microservices add a layer of efficiency for Java developers, allowing them to split their
application up into smaller, more maintainable components. They are also helping reduce
time wasted on rebuilding and redeploying applications. Yet, we saw that more than half of

engineers still spend more than one minute per each redeploy.

7 | Microservices Trends in Java Development Report PERFORCE



https://jrebel.com/software/jrebel/trial/
https://jrebel.com/software/jrebel/trial/

