
Microservices Trends
in Java Development Report

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners.



Microservices is an architectural software style where an application is built from lightweight, loosely-coupled services that allow 

developers to create, test, and release different functionalities separately. The improved agility and scale microservices provide have led 

to increased use within the Java ecosystem in the last several years over the traditional monolith architecture. 

M I C R O S E R V I C E S  B A C K G R O U N D

1  |  Microservices Trends in Java Development Report

What does the microservices landscape look like for these 

developers? 

In May 2019, a survey conducted by the JRebel team at Perforce 

aimed to discover how Java users have adopted microservices. 

We wanted to better understand the widespread microservices 

adoption and how developers are using these services within 

their project scope.

The survey concluded that while there is still a lot to learn in 

regard to microservices, this architecture does have a positive 

impact on reducing build and restart times during development. 

Executive Summary
A total of 69 respondents participated in the survey, 49 of which 

were using microservices in their main project and Java as their 

main language. This group of 49 people make up the findings 

below. The people surveyed were mostly not users of our 

products, so product biases should be avoided.

The sample size is not huge and the results have a considerable 

margin of error, if formally calculated. However, we believe this 

serves as a valuable temperature check of this hot and rapidly-

evolving technology segment. 

Survey Methods



The Microservices 
Architecture

2  |  Microservices Trends in Java Development Report

We asked respondents to select one from a list of 

frameworks they were using for microservices, with an 

option to add a free-text answer. 

A significant number (86%) indicated Spring Boot as 

their framework of choice. This response did not come 

as a surprise, as Spring Boot is the fastest-growing Java 

framework on the market with built-in microservices 

support.

Another expected finding is that Docker has a large 

footprint among microservices users. Docker fits nicely with 

a lot of patterns and best practices that microservices are 

known for. Each service should be:

     •  Isolated.

     •  On its own JVM.

     •  Able to start and stop on its own.  

     •  Scalable independently of other services.

Q: Which framework are you using for microservices?

Q: Are you using containers in your development environment?

◼  Spring Boot

◼  DropWizard

◼  Micronaut

◼  Only singleton’s & Java EE 8

◼  In-house service generator

     + Tomcat

◼  Customized framework built

     on Java, .NET and Node.js

86%

6%

2%

2%

2%

2%

◼  I’m using Docker

◼  No

◼  I’m using other container

     technology

◼  Web and EJB containers

61%

27%

10%

2%



M I C R O S E R V I C E S  V S .  M I N I S E R V I C E S

3  |  Microservices Trends in Java Development Report

Next, we asked respondents how many microservices they have in their main application:

Lots of people are actually using a rather small amount of microservices in their main application. Having 5 or less services in the 

application hints that these might not be the “true” microservices (small and single-purposed). 

A term sometimes used for that is “miniservices” – the big monolithic app has been broken down into smaller components, but 

some of the architectural constraints often associated with microservices have been relaxed (strictly one feature per service, etc.).

Whether a distinction between microservices and miniservices is actually meaningful likely depends on the user. For 

development and local deployment, miniservices might be pretty similar to working with a monolithic application. For 

debugging, performance testing, monitoring, or scaling the whole system, the complexity will increase immediately even if you 

have just a fistful of services.

Q: How many microservices do you have in your main application?

1-5 6-10 11-25 26-50 51-100 100+

27%

12%

39%

6% 6%
10%

https://sdtimes.com/micro/difference-miniservice-microservice/


How are Engineers Working 
with Microservices?

4  |  Microservices Trends in Java Development Report

From the Java tooling point of view, we wanted to determine whether developers 

are focusing on one service at a time or consistently making changes across services. 

We asked how many microservices are typically being modified simultaneously. 

To build on the previous question regarding the number of microservices used in an 

application, the responses here signal how small or interdependent each service is. 

The median number of services worked on simultaneously was three, so the 

developer tooling should make redeploying multiple microservices fast and easy.

D E V E L O P M E N T  E N V I R O N M E N T S
One of the most important questions we asked was how developers see the effects 

of changes in development. The intention was to gain insight into how developers 

are setting up their environment when working with microservices: 

     •  Running full applications locally (common in monolithic architectures).

     •  Running one or two services on a local Docker while modifying.

     •  Relying on unit tests and staging, skipping local deployment altogether. 

The differences between these options are significant for any Java tooling. 

Q: How many microservices are you

typically modifying simultaneously?

7

6

5

4

3

2

1



5  |  Microservices Trends in Java Development Report

Respondents could select more than one option between the following: locally run an automated test; run locally and validate with Postman, 

Curl, etc.; restart the container with the service and validate with Postman, Curl, etc.; and push to SCM and validate on a staging server. 

Most participants selected multiple answers, with an even split between unit tests vs. running apps locally. 

A quarter (25%) indicated that they completely rely on unit testing and staging, known as a test-driven development (TDD). 

About half of developers were taking advantage of unit tests, about half were still running the app locally. A quarter of responders didn’t run 

the application neither on host machine locally nor inside Docker.

Q: How do you see the effect of your changes in development?

Locally run an automated test

Run locally, validate with Postman, Curl, etc. 

Restart the container with the service, validate with Postman, Curl, etc. 

Push to SCM, validate the application on staging server 

57%

61%

20%

41%



Time Spent Restarting 
Microservices Apps

6  |  Microservices Trends in Java Development Report

Average build and redeploy times have decreased with the 

move from the monolith to the microservices architecture 

style. Over half (65%) reported spending two or less minutes 

on builds and redeploys.

This is a decrease from the median redeploy times of our 

userbase on WebLogic and WebSphere (used in monolithic 

enterprise apps), both of which are over three minutes. 

Still, over half of the developers are spending more than a 

minute each time they want to see the effect of their code 

changes. Over the course of the day, these short interruptions 

add up to a significant amount of time wasted. 

Also, a third of engineers wait over three minutes for each change, 

which is way too much. Tools like JRebel will still be useful in 

the context of microservices to eliminate this wasted time.

Q: How long does your build + redeploy take?

0-30 seconds (22%)

30s - 1 minute (18%)

2-3 minutes (4%)

1-2 minutes (25%)

3+ minutes (31%)

https://jrebel.com/software/jrebel/


7  |  Microservices Trends in Java Development Report

While the time spent deploying has declined, microservices haven’t 

had much of an impact on the number of build-deploy-validate 

cycles. In a previous survey we conducted, the median number of 

cycles was three per hour. The average value based on the current 

survey is 2.7 (with the median value being two). Independent of 

architecture, nobody wants to do blind coding for long.

Conclusion
 

As we continue to learn more about the microservices architecture and how it assists 

developers, we will also get a clearer picture on the best practices and tooling to support it. 

This survey provides preliminary insight into how this up-and-coming architecture is being 

employed and what impact it is having on how engineers do their work. 

Microservices add a layer of efficiency for Java developers, allowing them to split their 

application up into smaller, more maintainable components. They are also helping reduce 

time wasted on rebuilding and redeploying applications. Yet, we saw that more than half of 

engineers still spend more than one minute per each redeploy.

Q: How many build-deploy-validate cycles do you do per hour?

1                      2                     3                      4                      5                      6

Ready to Get 
Started?
 

JRebel speeds up microservices application 

development, immediately reloading changes 

and eliminating the need for redeploys. To learn 

more, request a free trial of JRebel today.

START FREE TRIAL

jrebel.com/software/jrebel/trial

https://jrebel.com/software/jrebel/trial/
https://jrebel.com/software/jrebel/trial/

