JRebel

Developer’s Guide to
Microservices Performance

More Java developers are working within microservices-based applications
than ever before. And, with developers taking a greater responsibility for
application performance, developing performant microservices has never
been more important.

In this white paper, we look at some of the unique ways that microservices
can cause unexpected performance issues — with a focus on common inter-
service performance issues and patterns that can help increase resilience
while decreasing the chance of cascading and catastrophic failures.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

Developer’s Guide to Microservices Performance J Rebel

Contents

Finding Microservices Performance Issues................. 3
Fixing Microservices Performance Issues................... §)
Solving N+T Problems.......c.ceneeiiiiieee e 6
Using Asynchronous Requests.........ccccoviiiiiiiiiiiiniiiiiinceeeeans 10
Mind Your Antipatternsccooeiiiiiii s 11
Throttling Overactive Services.........ooeviiiiiiiiiiiiiiiiiiiieeieeeeeenee, 11
Managing Third Party Requestscccceeiiiiiiiiiiiiieeeeee, 12
Avoiding Application Ceilingccoeuviiiiiiiiiiiiiiiiceeeeeeeee, 12
Choosing the Right Data Store........cccoviiiiiiiiiiiincnc e, 13
Using Database Cachingcccouiiiiiiiiiiiiiiiiieccceeee s 14
Configuring Database Connection Pools...........ccccceeeiiinennnn.. 15
Predicting Microservices Failureccoooviiiiiiiiiiiiiiiiiiieeenne, 16
When Microservices Failccccooiviiiiiiiiiiiininanen.. 16
Using Resilience Patternscooooiiiiiiiiiiiiiiiiiiiieene 17
CirCUIt Breaker ... e 17
Bulkh@ad........ceiiii e 18
StAtElESS. . e 19
Closing Thoughts......cccoviiiiiiiiceeeeee 20
Credits .o 20

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

3 | Developer’s Guide to Microservices Performance

JRebel

Finding Microservices
Performance Issues

At a symptomatic level, there can be clear warning
signs of performance issues within your application:
slow services, failing services, and, if the application
isn't engineered resiliently, application failure.

Ideally, the developer is looking at application (and
individual service) performance throughout the
development pipeline with a variety of tools suited to
the stage.

APM SOLUTIONS AND SERVICE MESHES

For applications already in production, APM solutions
like Dynatrace or AppDynamics can help developers
to assess availability and performance of their
applications and services. These tools focus on helping
companies identify issues that have appeared in their
application and mitigate the risk presented by these
performance issues. APM tools typically provide an
automated process called rollback which will revert
your application to the last working version of your
application if a performance issue presents itself.

Meanwhile, service mesh solutions like Istio

and Linkerd can help to streamline inter-service
communication and provide insights into service
health, latencies, and request volume. Those insights
can also help with data-driven feature rollout via canary

or blue/green deployments.

Application performance monitoring and service mesh
solutions provide big benefits during production due
to their ability to identify issues that are affecting the

application in production. They can also provide quick
band-aid solutions that help to mitigate those issues.
But developers still need tools that can give insight into
service performance during development in order to

truly address those problems.

ANALYZING CODE AND DATA STORE QUERIES

Another critical part of developing performant
microservices-based applications is in early stage
analysis and optimization.

Developers should regularly look at the performance
of individual services and the combined application
during development (including data store queries
and third-party services). By doing so, the developer
gets better insight into how their code is interacting
with other services and can better contribute to the

application at large.

This is particularly true as more development teams
are adopting the DevOps methodology. Previously,
developers never cared about performance as it was
“someone else’s job”. With DevOps methodology,
engineers are increasingly responsible for the way

in which their application is delivered and how well

it performs.

PROFILING TOOLS FOR JAVA MICROSERVICES

Profiling tools like |Profiler, VisualVM, YourKit, or
Stackify Prefix can give greater visibility into your Java
microservices application. These tools are typically
plugged into the test environment to provide the
engineers with a tool to address performance issues

like memory leaks and threading issues.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

4 | Developer’s Guide to Microservices Performance JRebel

If you're debugging Java microservices applications during development, XRebel can help to easily find performance issues.
Whether that’s spotting a slow service, finding inefficient queries to a data store, or tracing parallel CompletableFuture
requests, XRebel can be an invaluable tool for Java developers.

In the example below, we see XRebel helping to identify a performance issue tied to a series of database requests.

localhost

Q Spl’ing AHOME | CLFINDOWNERS | IS VETERINARIANS IESUPPLEMENTS AERROR
Owners
Name Address City Telephone Pets
110W. Liberty St. Madison 6085551023 Leo
638 Cardinal Ave. Sun Prairie 6085551749 Basil
2 2693 Commerce St. McFarland 6085558763 JewelRosy
563 Friendly St. Windsor 6085553198 lggy
2387 S. Fair Way Madison 6085552765 George
105 N. Lake St. Monona 6085552654 MaxSamantha
1450 Oak Bivd. Monona 6085555387 Lucky
345 Maple St Madison 6085557683 Mulligan
2749 Blackhawk Trail Madison 6085550435 Freddy
2335 Independence La. Waunakee 6085555487 LuckySly
€ spring

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

trademarks are the property of their respective owners. (0320AD20)

5 | Developer’s Guide to Microservices Performance JRebel

Looking closer, we understand that we are spending about the same amount of time initializing the Pets as we are initializing
the Visits within the OwnerController.processFindForm.

s Lveanvose

'Serviet.doDispatch

~ 100.0% 865
~lgas% ¢ cherSenviet processDispatch. i

60 ms ’ DispatcherServiet.render

92249

L1ms OwnerController.processFindForm B
acenDapatrResn
23ms TransactionAspectSupport.invokeW L

ocessFngFom

215ms Queryimpl.getResultList

el getRestist
212ms Loader.doQueryAndini’ Lose sowryasnssizeNonazCotectons
S3ma Losdecdouery
133ms Loader.doQur <2 nim Lossprcesionsse
S2m LoaderintalzeEnssesAndCotectons
asme EnttyType.sesove
48% 42ms AbstactLoadPlanBasecEnttyloaderioad EXTN 25ms
120 ResuSetProcessorimpl exraciResuts
SELECT .. FROM TYPES o Grows 034ms
Ve AbstractEntypersistarstProperyVelies
4ma LosdergatRonFromResuser
tme LosdecexecuteQuanSiatoment
2% 79m AbsscPersisuniColecion orcentaizaton
78ms Sessionimpl intiaizeCollecton
Tms AbstractlosdPlanBasedColiectonintiaizer initiaize EXED 44 me
19 ResurSeProcessoringl exraciResuts
SELECT ... FROM VISITS. [3] 4 rows 054ms

8% 15ms DispatcherServet getiiandier

Although this request only takes 86.5ms, we can see that we are taking twice as long processing both sets of query tables.

Next, we'll proceed to the I/O view where we can further investigate the queries and determine if there is an issue.

localhost

HTTP GET petchncionnsrs @ 142022498

Otame Atavact aasPunBasedCoteccrintaie rtaire €1

SELECT . FroM isTTS €D 4rom 0stme
SELECT . FROM VISTS 00tms
SELECT . FROM VISTS 003 ms
SELECT .. FROM VISITS 0o ms
SELECT .. FROM VISITS 0038 ms
SELECT .. FROM VISITS 0o ms
SELECT .. FROM VISITS 2rom 0048 m
SELECT .. FROM VISTS 2rom 0081 ms
SELECT .. FROMVISITS 0041 ms
SELECT .. FROM VISITS oo m
SELECT . FROM VISITS 0o ms
SELECT .. FROM VISITS 0038 me
SELECT .. FROM VISITS 003 ms
SELECT . FROMVISITS 0ok3m

Steme LossersoQury B

03me Londer processResuser 0

03Mms Abaract osdPunBasedt tay. caser kad ()

SELECT . FROM TYPES) Srom oM me
SELECT .. FROM TYPES 1row 0063 s
SELECT . FROM TYPES 1row 0061 ms
SELECT .. FROM TYPES 110w 0063 ms.
SELECT . FROM TYPES 1row 0077 ms
SELECT . FROM TYPES 1row oo m
SELECT . FROM TYPES 110w 0045 ms

031me Londer anecuteQueryStaerent £

032ms Loster gueResset £}

SELECT .. FROM OWNERS, PETS 1310w oxm

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

trademarks are the property of their respective owners. (0320AD20)

6 | Developer’s Guide to Microservices Performance J Rebel

Looking at the queries we can see that we are calling the find all owners, and that we are making a single query that is

returning 13 rows of data.

SuiReSUITSEl e

1 ... FROM OWNERS, PETS ~

elect
distinct owner0_.id as idl_0_0_,

petsl_.id as idl_1_1_,
owner0_.first name as first na2 0 _0_,
owner0_.last_name as last_nam3_0_0_,
owner0_.address as address4_0_0_,

. . 1 Stch cwner pets WHERE owner lastName UKE tastName ~ £3) 10 12me
owner0_.city as city5_0_0_,

owner0_.telephone as telephoné_0_0_, .3
petsl_.name as name2_1_1_, taizaton €1
petsl_.birth_date as birth da3_1 1 , [peedunnis

petsl_.owner_id as owner_id4_1 1 ,
petsl_.type_id as type_id5_1_1_, o
petsl_.owner_id as owner_id4_1 0_ , Sarectrenyicazerions O
petsl_.id as idl_1_0__
~m
mmers owner0_ FROM OWNERS, PETS 130w oxm

ter join pets petaggliiiselee
ain

Looking the at the visits table, we see that we are calling all visits that a pet has. In order to fetch the visits, a separate query is
being issued for each pet. If, for example, an owner has 3 separate pets, then 3 additional queries will be executed to fetch the
visits information from the pets. This is known as an N + 1 problem — where a single query is designed to fetch all N pets with

an additional N queries to fetch all visits of those pets.

Not all microservices performance issues are created equally. Some, like the N+1 Problem, can be as simple as changing a

fetch type. Unfortunately, not all are so easy.

Picking the wrong data store for a service, for example, can mean additional hardware cost, higher risk of timeouts and

unavailability, and a bad end-user experience.

Even fixes, as we detail in our section on antipatterns, can create unintended performance consequences for your application.

SOLVING N+1PROBLEMS

Object oriented languages like Java often need to work with relational databases. That either means a developer or database
administrator needs to write (optimized) SQL requests, or they need to use an intermediary layer, like an ORM framework, that
generates compatible requests for that database. While functionally great, ORM frameworks have a reputation for creating

unoptimized queries — including N+1 queries.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

www.jrebel.com . .
trademarks are the property of their respective owners. (0320AD20)

7 | Developer’s Guide to Microservices Performance JRebel

An N+1 Problem, also known as an N+1 Select Problem or N+1 Query, happens when a service requests a number of rows (N)

of data from a database, then individually requests dependent data for each of those N items.

localhost

‘ :) Spl’lng A HOME CUFIND OWNERS | i= VETERINARIANS IESUPPLEMENTS AERROR

Owners
Name Address City Telephone Pets
110 W. Liberty St. Madison 6085551023 Leo
638 Cardinal Ave. Sun Prairie 6085551749 Basil
riquez 2693 Commerce St. McFarland 6085558763 JewelRosy
563 Friendly St. Windsor 6085553198 lggy
2387 S. Fair Way Madison 6085552765 George
105 N. Lake St. Monona 6085552654 MaxSamantha
1450 Oak Bivd. Monona 6085555387 Lucky
345 Maple St. Madison 6085557683 Mulligan
2749 Blackhawk Trail Madison 6085559435 Freddy
2335 Independence La. Waunakee 6085555487 LuckySly
399 Boylston Ave Boston 9998887777 N+1DopeyJake
€ spring

Let’s return to our earlier N+1 problem. We've added a new owner, Spencer Last, and with that new owner added three new
pets N+1, Dopey and Jake. From the I/O we will see that we have increase the query count to 16.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

trademarks are the property of their respective owners. (0320AD20)

8 | Developer’s Guide to Microservices Performance JRebel

03 ms AbaractioadPlanBasedt.

SELECY . FROMVISITS ED)
SELECT .. FROM VISITS
SELECT . FROM VISITS.
SELECT .. FROM VISITS

SELECT .. FROM VISITS
SELECT .. FROM VISITS

SELECT .. FROM VISITS.

AazyCotections €23

SELECT .. FROM VISITS T

SELECT . FROM VISITS Cotectionintiaizer intasze €0
SELECT .. PROM VISITS. e 037 ms
SELECT .. FROMVISITS i i
1row 0026 ms
SELECT . FROM VISITS 1row 0027 ms
SELECT . FROMVISITS s ootoms
SELECT . FROM VISITS i il
ssms oor7ms
SELECT .. FROM VISITS MVISTS 0018 ms
SELECT .. FROM VISITS FROMVisTS 0024 ms
e ST . FROMVISTS 200 ooxams
SELECT .. FROMVISITS 200m o0oz8ms
A8ime Losder doQuery B
SELECT .. FROMVISITS o002ms
SELECT .. FROMVISITS oot7ms
SELECT .. FROMVISITS oot6ms
SELECT .. FROMVISITS ootems
SELECT .. FROMVISITS rom 000ms
SELECT .. FROMVISITS 00z ms
053ms Loader.doQuery)
026ms Loader processResutSet [
azems AbstactiosdPlanBasedEntiyLoadersosd 01
+ SELECT .. FROM TYPES O Groms o028ms
TR —————
PRre——
SELECT .. FROM OWNERS. PETS 160w o2rms

To remedy this we will be changing our fetching strategy in the Pet Class from Eager to Lazy.

fetch

After making the change we will return to the application refresh the page and look at our results.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

trademarks are the property of their respective owners. (0320AD20)

9 | Developer’s Guide to Microservices Performance JRebel

.nvoke
.erServlet.doDispatch

JispatcherServlet.processDispatchResult

OwnerController.processFindForm
5ms JpaQueryExecution$CollectionExecution.doExecute °

89ms Loader.doQueryAndinitializeNonLazyCollections

9% 89ms Loader.doQuery ichRos
ms AbstractPe Coll r a) lization .
AntiaiizoNonLazyColiectons.
lispatcherServlet.getHandler o
Jvancir
15:03.022 v 2
Larvat scDspatch

« DispatcherSenviet processDspatchResut
809% 858w DspatcherServetronder
704% ssms AbstactMarkupTempiateParserparse
789% sasm MarkupParsec parseBufier
77.3% s34ms ProcessorTemplateHandie handeOpenElement
676% 4soms Modelprocess EEEN 0s6me
480% 3utms OpenElementTag beHanded
480% 3Mtms ProcessorfempiateHandiec handeOpenElement

6e% 24m e

68% 25ams AbstactAtbuteTagProcessor doProcess
Z21ms AvstactStandardFragmentinsertonTagProcessor doProcess

25m

200ms FragmentExpression resoveExecutedF ragmentExpression

When comparing the previous request with the updated code we can immediately see that we have reduced to the time spent

in the Loader.doQueryAndinitializeNonLazyCollections method trace by over 2x.

... FROM OWNERS, PETS ~

.ect

distinct owner0_.id as idl_0_0_,

petsl_.id as idl_1_1 ,
owner0_.first name as first na2_0_0_,
owner0_.last name as last_nam3_0_0_,

owner0_.address as address4_0_0_,

fetch owner pets WHERE ownerlastName LIKE fastName ~ 3 10 039w

owner0_.city as city5_0_0_,
owner0_.telephone as telephoné_0_0_,

petsl_ .name as name2_ 1 1 ,

petsl_.birth date as birth da3_1 1 , eon® . -
petsl_.owner_id as owner_id4_1_1_, o
petsl_.type_id as type id5_1 1 ,

ers 16 rows 025ms

petsl_.owner_id as owner_id4_1 0_ ,
petsl_.id as idl_1 0

= _owner0_

Lot outer join o1 on
here
T

We can also see in the XRebel Comparison view that we have removed branch from the request call tree
AbstractPersistentCollection.forcelnitialization. Next, if we proceed to the I/O view we can see that we have significantly

reduced the number of queries to 7!

Now we are only calling the Owners and Pets in one query and returning the Pet types in another.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

10 | Developer’s Guide to Microservices Performance JRebel

Using Asynchronous Requests

Determining when to use synchronous vs asynchronous calls has a large impact on application performance. And,
depending on the circumstance, calling a service synchronously can cause significant performance bottlenecks for other
services and for the combined application.

By using asynchronous requests, a service can make a request to another service and return immediately while that request
is fulfilled. That allows for more concurrent work within individual services, and more efficient requests for the combined
application.

Keep in mind, developers still need to make sure that the receiving service can fulfill those asynchronous requests within an
acceptable timeframe, and scale to accommodate request load.

SYNCHRONOUS ASYNCHRONOUS
CLIENT [Hummnd - - — —
- = 7 = =

cuev S

ASYNCHRONOUS MESSAGING TECHNOLOGIES

Some of the most popular open source asynchronous messaging systems used in microservices architectures:

k"afka Apache Kafka is an open source stream processing software platform. It allows developers
A distributed streaming plotform to publish, process, and store streams of data in distributed and replicable clusters.
h R 3 b b|t RabbitMQ is a high scale, high availability open source message broker used for message

queuing, routing and more.

APACHE

ﬁg; A&TlVEMQ ActiveMQ is the most popular, multi-platform Java-based messaging server. It’s used for
90, load balancing, availability fail safes, and more.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

https://kafka.apache.org/
https://www.rabbitmq.com/
https://activemq.apache.org/

11 | Developer’s Guide to Microservices Performance

Mind Your Antipatterns

Sometimes trying to solve a problem can create a
bigger problem. For example, adding timeout and
retry functionality to a service sounds like a good
idea, but if another service it calls is chronically slow
and always triggers the timeout, the retry will put
additional stress on an already overloaded service,
causing a bigger latency issue than the original fix
tried to resolve.

Before implementing resiliency techniques in one
service, carefully consider how it will impact other
services and the application as a whole. Service
meshes like Istio can make overall resiliency easier
by enforcing consistency and avoiding one-off

implementations.

AN ASYNCHRONOUS ANTIPATTERN

As we discussed in the last section, asynchronous
calls can help to avoid a single slow response slowing
down the entire response chain. But developers also
need to be careful to avoid antipatterns with these

asynchronous calls.

For example, a developer puts a message queue
between two services to handle short term call bursts.
This helps the service to handle more calls without
getting overloaded, but it doesn’t fix the underlying
issue — the service is still slow.

In the end, the message queue quickly maxes out,
calls start to fail, and the dependent services are more
difficult to restart.

To make a bad situation worse, making upgrades to
the receiving service is now more difficult because
messages in an older format may need to be
processed alongside a newer format.

JRebel

Throttling Overactive Services

Is one of your microservices receiving too many
requests to handle? Throttling requests or using fixed
connection limits on a service by service basis can
help your receiving services keep up. Throttling also
helps with fairness by preventing a few hyperactive

services from starving others.

While throttling does ensure availability of the service
for your application, it will make it work slower. But
it's a better alternative than having the application

fail altogether.

TECHNOLOGIES FOR THROTTLING,
LOAD BALANCING AND SCALING

Developers don’t need to reinvent the wheel with
every microservice or microservices application.
Using a service mesh like Istio or Linkerd can help
developers to create better performing microservices
— without the overhead of in-house solutions for
throttling, load balancing, and scaling. At a logistical
level, they can help add network configuration,
security, traffic management, and telemetry to your

application.

At the application level, these services can help to
apply resilience patterns like load balancing, retries,
failover, and circuit breaker.

For deployment, these services can help support
canary and blue/green releases for better overall
application quality.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

12 | Developer’s Guide to Microservices Performance

JRebel

ALJsﬁo

Istio provides a dedicated layer that facilitates
communications between microservices, including

security, observability, and traffic management.

ILINKERD

Linkerd is a service mesh that provides

runtime debugging, observability, security,
and traffic management via proxies attached to
individual services.

Managing Third-Party Requests

Even if your microservices are running efficiently
with one another, sometimes the limitations of a
third-party service or API can cause significant
issues for an application.

Using text detection in images? Your requests to

the Google APl will play a role in your application
performance. Authenticating your users with
Facebook? If they're having a slow response, now you
are too. Using Amazon Polly for voice recognition?
You get the picture.

dWS

I
HmG

With the increasing presence of third-party services and
APIs within applications, it's important that developers
take proper action to ensure these services and APIs
don't lead to application failure.

KNOW THE LIMITATIONS

It's important for developers to understand the
limitations of a third-party service before relying on
them at scale. Can they keep up with your expected
demand while maintaining the performance you require?
Is their stated SLA compatible with yours? For example,
if you promise 99.99% uptime, but one of your service
providers only guarantees 99.9%, your customers will
eventually be disappointed and blame you.

ENSURING RESILIENCY

Developers also need to be proactive. Applications
must be resilient to slow third-party requests by utilizing
best practices like caching, pre-fetching, or using
resiliency patterns like the circuit breaker to prevent

services from causing cascading failures.

Avoiding Application Ceiling

Even properly configured and optimized services can

have performance ceilings.

If you've already determined that all your requests are
necessary and optimized, and you're still overloading
your service, consider load balancing across additional
containers to improve scalability.

You might even consider autoscaling to dynamically
adjust to incoming request load by adding and
removing containers as necessary. If you go this route,
be sure to implement a maximum container count and
have a plan for defending against DDoS (Distributed
Denial of Service) attacks, especially if your application
is deployed in a public cloud.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

www.jrebel.com . .
trademarks are the property of their respective owners. (0320AD20)

https://istio.io/
https://linkerd.io/

13 | Developer’s Guide to Microservices Performance

That said, even the best-planned and coded
applications and services have hardware ceilings.
Applications and services that need to maintain large
databases with true ACID transactions, for example,
will always need to have enough processing power to
fulfill requests to those databases — even if that load

is balanced across multiple servers.

Consider clustering technology and potentially
moving some of your services to NoSQL solutions
that can offer scale higher than an RDBMS. However,
be prepared to deal with eventual consistency and
compensating operations if you need ACID-like

transactions across services.

Choosing the Right Data Store

Microservices give the flexibility to use multiple
data stores within a single application. But picking
the wrong kind of storage can cause significant
performance issues.

Imagine the hardware cost for a streaming video
service if they used a RDBMS to dynamically update
content recommendations for 169 million users based

on their individual viewing habits!

It's important for developers to choose data stores
for microservices at a service by service level and to

make sure that the selected data store is the best tool

for each particular job.

STRUCTURED DATA

UNSTRUCTURED DATA

Phone number, zip code, date of birth Text, audio, videos

JRebel

DATA STORES FOR CHANGING,
UNSTRUCTURED DATA

Using a RDBMS for a service that processes a large
amount of changing, unstructured data will mean
working against the primary benefit of the relational
database architecture — consistency. Keeping data
consistent across these rapidly changing databases
would be unnecessary and expensive.

In these cases, it's better to use a scalable and
schemaless NoSQL data store like MongoDB
or Cassandra.

DATA STORES FOR CONSISTENT DATA

STRICT CONSISTENCY

Write Acknowledged
from client to client

Write propagated
through cluster

Internal
acknowledgement

* System always returns latest write
* Guaranteed data resiliency

EVENTUAL CONSISTENCY

Write Acknowledged
from client to client
Eventual write
propagation
V2 ~N V2 N

|

* System eventually returns latest write
* Potential for data loss if node fails

Structured vs Unstructured Data Strict vs. Eventual Consistency

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

trademarks are the property of their respective owners. (0320AD20)

https://learn.g2.com/structured-vs-unstructured-data
https://www.cohesity.com/blog/strict-vs-eventual-consistency/

14 | Developer’s Guide to Microservices Performance

Traditional relational databases choose to be
consistent even if it means becoming unavailable
during a hardware or software failure. If your

use case allows for occasional downtime and

ACID transactions are paramount, or eventual
consistency causes more problems than it’s worth,
consider a tried and true RDBMS. These workhorse
databases don’t grab headlines like they used to,
but they're still as valuable as ever when the use
case fits.

Caching Database Calls

When a service requests a field of data across
multiple databases, each of those databases has

the capacity to hold up that request.

If that information is frequently accessed by

hat service, consider caching that information in
an easily accessible place that doesn’t rely on
multiple databases.

Making sure your request is targeted at a single,
cached database, with rules that add request
destinations upon a set request time limit can help
make sure your database calls never timeout, but
also don’t cause excessive calls.Memcached is
used in high performance and distributed systems
to store arbitrary data in-memory — allowing for
better utilization of available memory. Memcached
is used primarily for key-value memory structures.

JRebel

Redis, like Memcached, is used for high performance
in-memory data storage but is more functionally

robust. It supports Hash, List, String, Set, and Sorted
Set data types, and can also swap cached memory to
disk if not used frequently enough to warrant storage

in-memory.

Some database systems offer native in-memory
caching. Cassandra, for example, can be configured
to store data in-memory for Key and Row data types
while compacting SSTables by default.

CACHING AND PROJECTIONS

In Event-Driven Architectures (EDA), the system of
record may be an ordered collection of events that
already happened (e.g., “customer created”, “order
shipped”, “added $10 to account ABC").

To determine someone’s current account balance,
you might have to look through millions of records
to sum all the deposits and withdrawals for a

particular account, which is obviously too slow for

a waiting user.

In this case, you might create a “Projection” from
the main event stream that contains only account
balance-related transactions and store it in another
data store more suited for quick lookups. At that
point, you could specifically cache account balances
in an in-memory data store like memcached or Redis
for even faster queries if that query becomes your
primary bottleneck to performance.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

www.jrebel.com . .
trademarks are the property of their respective owners. (0320AD20)

15 | Developer’s Guide to Microservices Performance JRebel

POPULAR CACHING TECHNOLOGIES

Caching can be complicated, but open-source technologies like Memcached and Redis can make caching easier to integrate.

Memcached is used in high performance and distributed systems to store arbitrary data in-
. MEMCACHED memory —allowing for better utilization of available memory. Memcached is used primarily

for key-value memory structures.
. Redis, like Memcached, is used for high performance in-memory data storage but is more
e red ls functionally robust. It supports Hash, List, String, Set, and Sorted Set data types, and can
also swap cached memory to disk if not used frequently enough to warrant storage

Some database systems offer native in-memory caching. Cassandra, for example, can be configured to store data in-

memory for Key and Row data types while compacting SSTables by default.

Database Connection Pools

! PHYSICAL . .
APPLICATION : CONNECTIONS One of the most effective ways to reduce overhead in
J— : microservices that access and alter databases (aside from
Thread | [caching) is to pool their connections to that database.

Thread 2

A typical service will establish a connection to a data

SERVER 1 store, issue some queries, and close the connection very

quickly. Connecting and disconnecting adds quite a bit

of overhead to a short-lived connection, thus limiting the

amount of work that can be done. A connection pool

SERVER 2 typically establishes a fixed set of connections to a data

store when it starts up and lets the calling service re-use

an existing connection from the pool instead of opening

- - , and closing them with every request. The resultisa much
Database Connection Pool Example

more efficient service.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

https://memcached.org/
https://redis.io/
https://docs.oracle.com/cd/E18283_01/appdev.112/e10646/oci09adv.htm

16 | Developer’s Guide to Microservices Performance

CONNECTION POOLING FRAMEWORKS

While in the past, some hardy developers may have
needed to create their own connection pooling
services, there are now frameworks that make

connection pooling in Java easier to implement.

Popular connection pooling frameworks for
Javainclude:

¢ Apache Commons DBCP — Implements

database connection pooling for JDBC.

¢ HikariCP - High-performance]DBC

connection pooling.

¢ (C3PO - Library that augments JDBC

drivers for the enterprise.

When Microservices Fail

Despite all the planning and painstaking
development involved in creating a microservices
application, microservices can and will fail. With
enough services and load on the system, the
application will always be in a state of partial failure
and recovery due to hardware issues, networking
glitches, virtual machine crashes, bursty traffic
causing timeouts, and the like. It's no longer a matter
of “if” or “when” something will go wrong — that’s
a given — but rather how to architect for automatic
self-healing.

It's up to development teams to create applications
that can handle failure gracefully. What that means
depends on the application. For some, that may
mean maintaining full functionality and adequate
performance during service failures. For others, it
may mean just preventing one failure from causing

cascading failure of the application.

How developers and application architects prevent
those failures varies from project to project. But the

JRebel

core concept of application resiliency, and the
resiliency patterns and techniques used to preven
these failures, should be a major topic of discussion
for every development team.

What Are Resiliency Patterns?

Resiliency patterns are a type of service architecture
that help to prevent cascading failures and to
preserve functionality in the event of service failure.
Common resiliency patterns used in application
development include the bulkhead pattern and

circuit breaker pattern.

In this section of the white paper, we'll look common
failure points in microservices applications, how to
predict where your application may fail, and look at
the resiliency patterns you can use to help prevent
cascading and otherwise catastrophic failures for

your application.

PREDICTING RESILIENCE ISSUES

Many of the performance issues and fixes we've
looked at so far in this white paper can be looked at as
band-aids for performance problems. Just because
you have optimized requests from one service to
another service doesn’t mean you’ve addressed the

underlying architectural issue within the application.

As Mark Richards points out in his book, Finding
Structural Decay in Architectures, prevalent

enough issues — like unintended static coupling
between services — can be indicative of a larger

architectural mismatch.

Because many, if not most, microservices applications
are transitioned from existing monolithic applications,
there are bound to be a few cases where making that
transition was the wrong decision.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

trademarks are the property of their respective owners. (0320AD20)

https://commons.apache.org/proper/commons-dbcp/
https://github.com/brettwooldridge/HikariCP
https://www.mchange.com/projects/c3p0/

17 | Developer’s Guide to Microservices Performance JRebel

Identifying Failure Points Using visualization tools to make sense of those complex

traces and how they progress through the microservices

If you have been troubleshooting your application . L . . .
that comprise the application helps engineers to identify

and individual service performance, you have already o
and bolster application failure points proactively instead

likely identified a few services that either receive or i
of reactively.

send a lot of requests. Optimizing those requests is

important and can help to prolong availability. But, USING RESILIENCE PATTERNS

given a high enough load, the services sending or . , .
In the next section, we’ll cover three resilience patterns

receiving those requests are likely failure points for . . .
that can help developers to engineer failure-resistant

your application. . . o
microservices applications.

“100% is the wrong Circuit Breaker Pattern
e | ia bl | Ity ta l’g et]COI’ Applications often rely on remote resources, like third-
. . party services, as a key component of their program.
ba SICa | |y eve ryt h In g But what happens when one of those remote resources
(pa cemakers and anti- times out upon request? Does your microservice
|OCk bra keS bel ng nota b|e continue calling that resource in an endless loop until

) it fulfills that request? What happens when multiple
exceptions).

services are requesting that same remote resource?

- Betsy Beyer, Site Reliability Engineering:
How Google Runs Production Systems

entry / reset failure counter

do / if operation succeeds
return result
else
increment failure counter
return failure

exit/

Failure threshold
reached

Timeout timer

expired
entry / reset success counter —_ entry / start timeout timer
do / if operation succeeds do / return failure
increment success counter | Operation failed exit/
return result —
else
return failure
. . . exit/
Source: https://www.infoq.com/presentations/uber-microser-
vices-distributed-tracing/
Circuit breaker pattern example

For enterprise microservices applications like
Uber, where engineers are using thousands upon USING THE CIRCUIT BREAKER PATTERN
thousands of microservices, tracing requests across The circuit breaker pattern, just like the electrical

these services can be hopelessly complex — with . .
engineering concept, would prevent subsequent

traces that have hundreds of thousands of spans. . . .
requests from occurring — preventing the service from

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

getting overloaded. Additionally, by monitoring how
many requests to that service have failed, a circuit
breaker pattern can prevent additional requests from
coming into the service for an allotted time, or untilL
the amount of failed requests by time have reaches a
certain threshold.

When recovering from failure, the circuit can
return incrementally to full functionality to prevent
overloading the service with a large amount

of requests.

WHEN TO USE THE CIRCUIT BREAKER PATTERN

The circuit breaker pattern can add significant

overhead to your application, so it’s best to use

CACHE
PARTITION

v

I

(

LOAD
9

USERS

2

<

4

CACHE
PARTITION

|
|
|
|
|
|
|
1
1
|
|
|
|
I'| PARTITION
|
|
|
T
[
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
CACHE |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LOAD ; 6
9

USERS

CACHE

18 | Developer’s Guide to Microservices Performance

DATABASE

(

DATABASE

Bulkhead pattern applied via cache partition

JRebel

sparingly, and only in cases where you’re accessing

a remote service or shared resource prone to failure.
If you user a service mesh like Istio, it’s easy to
experiment with various resiliency patterns, including
Circuit Breaker, to see which techniques work best for

each service.

Bulkhead Pattern

When architecting microservice-based applications,
it's easy to overload specific services within the
application. As we’ve outlined throughout this white
paper, overloading these services can lead to slow
applications at best, and catastrophic failures at
worst.What is the Bulkhead Pattern?

The bulkhead pattern is an application resiliency
pattern commonly employed in microservices
applications. It's used to isolate services and
consumers via partitions in order to prevent
cascading failures, give sliding functionality when
services fail vs total failure, and to prioritize access for
more important consumers and services.

In the example below, we see the bulkhead pattern
applied to a database cache. In the non-partitioned
database cache, the failure of the cache leads to
the services interacting directly with the database,
leading to application failure. But in partitioned
example, we can see that the partition for service c
has failed independently, resulting in the failure of
service ¢ without immediately causing failure in the
other two services.

If those cache partitions were configured as a cluster
sharing the same data in each instance, then the
service could be configured to access one of the

remaining partitions upon failure.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

www.jrebel.com

19 | Developer’s Guide to Microservices Performance

JRebel

TIPS FOR USING BULKHEAD PATTERN

While useful for preventing catastrophic failures,

the bulkhead pattern does add complexity to

your application. For teams working on services
independently, understanding where each service
fits within the bulkhead pattern and how their service
is partitioned relative to other services is crucial to a
performant application.

Additionally, keep in mind that this pattern — while
great for resiliency — can add another performance
hurdle for your application.

Stateless Services

What happens if a service being called upon fails
in your microservices application? If there isn't an
alternative database or service that can fulfill that
request, additional services can fail, leading to a
cascading failure of the entire application.

But what if you could have a copy of that service
ready to go if the primary fails? Or another one that
could be spun up on demand instantly if that second
service fails?

USING STATELESS SERVICES FOR RESILIENCY

Stateless services can achieve that function Because
they depend on inputs, and don’t actually hold data,
any copy of that service can serve just as well as

the original.

In addition, these services can be instantiated
dynamically as the need arises instead of existing
permanently within the application — meaning less
resource usage for the service and application.

www.jrebel.com

As an alternative, you can imagine a service that needs
to serve many requests for non-persistent data, but the
demand is lumpy, coming in bursts. But when those
requests are issued, using asynchronous requests or
request buffers can’t fulfill the requests fast enough for a
good end-user experience.

An engineer could allocate a large chunk of resources
to that service, add additional hardware to
accommodate in case of high loads, or they could
employ a stateless, scalable service that can spin up
new services to fulfill requests during heavy load, using

minimal extra resources and only when scaled.

WHEN TO USE STATELESS VS STATEFUL SERVICES

Stateless services are ideal for high availability,
scalability, and performance, but obviously can’t be
used for everything. In fact, they're only possible if

the data they act upon is provided by the caller. For
example, converting a video from one format to another,
text-to-speech generation, or image recognition.If you
do need to store state, as the majority of services do,
carefully consider where to putit. If you store itin the
local container, access will be fast, but what happens if
the container crashes and the data is corrupted? If you
store in a NAS or SAN, will there be consistency issues

if multiple services read and write to it concurrently?

If you use a cloud storage service, how will that affect
latency? As with most questions, the answers are
specific to each service — use the best tool for the job
as opposed to forcing every problem to look like a nail if
you own a really good hammer.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

20 | Developer’s Guide to Microservices Performance J Rebel

Closing Thoughts Find Performance Issues With XRebel,
In this white paper, we've talked about just some Fix Them Faster With JRebeI

of the ways that developers can improve performance Want to see how XRebel and JRebel combine for

in microservices. lightning-fast performance improvements during Java

o . application development? Request a trial and see the
But it's important to note that while many of these

. . o o difference for your team.
ideas can improve application performance, giving

your developers greater visibility into the application
as individual services are developed, and continually REQU EST TRIAL

communicating about changes happening within

https://www.jrebel.com/products/free-trial

the application, can also help teams to create more

performant applications.

Lastly, all the troubleshooting in the world won't fix
an architectural mismatch. Microservices bring many
benefits, but they're not a one-size-fits-all solution.

If you have any questions about the material covered
within this white paper, be sure to reach out to us on

Twitter, LinkedIn, or via the |Rebel contact us page.

Thanks for reading,

The JRebel/XRebel Team

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome com-
plex product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio in-
cludes solutions for Agile planning & ALM, APl management, automated mobile & web testing, embeddable analytics, open source support,
repository management, static & dynamic code analysis, version control, and more. With over 15,000 customers, Perforce is trusted by the
world’s leading brands to drive their business critical technology development. For more information, visit www.perforce.com.

JRebel by Perforce © Perforce Software, Inc. All trademarks and registered

www.jrebel.com . .
trademarks are the property of their respective owners. (0320AD20)

https://twitter.com/JRebel_Java
https://www.linkedin.com/company/jrebel/
https://www.jrebel.com/contact-us
https://www.jrebel.com/products/free-trial

