
www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

Introduction

More Java developers are working within microservices-based applications

than ever before. And, with developers taking a greater responsibility for

application performance, developing performant microservices has never

been more important.

In this white paper, we look at some of the unique ways that microservices

can cause unexpected performance issues — with a focus on common inter-

service performance issues and patterns that can help increase resilience

while decreasing the chance of cascading and catastrophic failures.

W H I T E PA P E R

Developer’s Guide to
Microservices Performance

WHITE PAPER

Developer’s Guide to Microservices Performance

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

Contents

Finding Microservices Performance Issues.................. 3

Fixing Microservices Performance Issues.................... 6
Solving N+1 Problems.. 6

Using Asynchronous Requests.. 10

Mind Your Antipatterns. ...11

Throttling Overactive Services...11

Managing Third Party Requests.. 12

Avoiding Application Ceiling... 12

Choosing the Right Data Store.. 13

Using Database Caching.. 14

Configuring Database Connection Pools................................. 15

Predicting Microservices Failure... 16

When Microservices Fail...16
Using Resilience Patterns... 17

Circuit Breaker.. 17

Bulkhead.. 18

Stateless... 19

Closing Thoughts.. 20

Credits.. 20

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

3 | Developer’s Guide to Microservices Performance

Finding Microservices
Performance Issues

At a symptomatic level, there can be clear warning

signs of performance issues within your application:

slow services, failing services, and, if the application

isn’t engineered resiliently, application failure.

Ideally, the developer is looking at application (and

individual service) performance throughout the

development pipeline with a variety of tools suited to

the stage.

APM SOLUTIONS AND SERVICE MESHES

For applications already in production, APM solutions

like Dynatrace or AppDynamics can help developers

to assess availability and performance of their

applications and services. These tools focus on helping

companies identify issues that have appeared in their

application and mitigate the risk presented by these

performance issues. APM tools typically provide an

automated process called rollback which will revert

your application to the last working version of your

application if a performance issue presents itself.

Meanwhile, service mesh solutions like Istio

and Linkerd can help to streamline inter-service

communication and provide insights into service

health, latencies, and request volume. Those insights

can also help with data-driven feature rollout via canary

or blue/green deployments.

Application performance monitoring and service mesh

solutions provide big benefits during production due

to their ability to identify issues that are affecting the

application in production. They can also provide quick

band-aid solutions that help to mitigate those issues.

But developers still need tools that can give insight into

service performance during development in order to

truly address those problems.

ANALYZING CODE AND DATA STORE QUERIES

Another critical part of developing performant

microservices-based applications is in early stage

analysis and optimization.

Developers should regularly look at the performance

of individual services and the combined application

during development (including data store queries

and third-party services). By doing so, the developer

gets better insight into how their code is interacting

with other services and can better contribute to the

application at large.

This is particularly true as more development teams

are adopting the DevOps methodology. Previously,

developers never cared about performance as it was

“someone else’s job”. With DevOps methodology,

engineers are increasingly responsible for the way

in which their application is delivered and how well

it performs.

PROFILING TOOLS FOR JAVA MICROSERVICES

Profiling tools like JProfiler, VisualVM, YourKit, or

Stackify Prefix can give greater visibility into your Java

microservices application. These tools are typically

plugged into the test environment to provide the

engineers with a tool to address performance issues

like memory leaks and threading issues.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

4 | Developer’s Guide to Microservices Performance

Identifying Microservices Performance Issues With XRebel

If you’re debugging Java microservices applications during development, XRebel can help to easily find performance issues.

Whether that’s spotting a slow service, finding inefficient queries to a data store, or tracing parallel CompletableFuture

requests, XRebel can be an invaluable tool for Java developers.

In the example below, we see XRebel helping to identify a performance issue tied to a series of database requests.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

5 | Developer’s Guide to Microservices Performance

Although this request only takes 86.5ms, we can see that we are taking twice as long processing both sets of query tables.

Next, we’ll proceed to the I/O view where we can further investigate the queries and determine if there is an issue.

Looking closer, we understand that we are spending about the same amount of time initializing the Pets as we are initializing

the Visits within the OwnerController.processFindForm.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

6 | Developer’s Guide to Microservices Performance

Looking at the queries we can see that we are calling the find all owners, and that we are making a single query that is

returning 13 rows of data.

Looking the at the visits table, we see that we are calling all visits that a pet has. In order to fetch the visits, a separate query is

being issued for each pet. If, for example, an owner has 3 separate pets, then 3 additional queries will be executed to fetch the

visits information from the pets. This is known as an N + 1 problem — where a single query is designed to fetch all N pets with

an additional N queries to fetch all visits of those pets.

Fixing Microservices Performance Issues

Not all microservices performance issues are created equally. Some, like the N+1 Problem, can be as simple as changing a

fetch type. Unfortunately, not all are so easy.

Picking the wrong data store for a service, for example, can mean additional hardware cost, higher risk of timeouts and

unavailability, and a bad end-user experience.

Even fixes, as we detail in our section on antipatterns, can create unintended performance consequences for your application.

SOLVING N+1 PROBLEMS

Object oriented languages like Java often need to work with relational databases. That either means a developer or database

administrator needs to write (optimized) SQL requests, or they need to use an intermediary layer, like an ORM framework, that

generates compatible requests for that database. While functionally great, ORM frameworks have a reputation for creating

unoptimized queries — including N+1 queries.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

7 | Developer’s Guide to Microservices Performance

What is an N+1 Problem?

An N+1 Problem, also known as an N+1 Select Problem or N+1 Query, happens when a service requests a number of rows (N)

of data from a database, then individually requests dependent data for each of those N items.

Let’s return to our earlier N+1 problem. We’ve added a new owner, Spencer Last, and with that new owner added three new

pets N+1, Dopey and Jake. From the I/O we will see that we have increase the query count to 16.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

8 | Developer’s Guide to Microservices Performance

To remedy this we will be changing our fetching strategy in the Pet Class from Eager to Lazy.

After making the change we will return to the application refresh the page and look at our results.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

9 | Developer’s Guide to Microservices Performance

When comparing the previous request with the updated code we can immediately see that we have reduced to the time spent

in the Loader.doQueryAndInitializeNonLazyCollections method trace by over 2x.

We can also see in the XRebel Comparison view that we have removed branch from the request call tree

AbstractPersistentCollection.forceInitialization. Next, if we proceed to the I/O view we can see that we have significantly

reduced the number of queries to 7!

Now we are only calling the Owners and Pets in one query and returning the Pet types in another.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

10 | Developer’s Guide to Microservices Performance

Apache Kafka is an open source stream processing software platform. It allows developers

to publish, process, and store streams of data in distributed and replicable clusters.

RabbitMQ is a high scale, high availability open source message broker used for message

queuing, routing and more.

ActiveMQ is the most popular, multi-platform Java-based messaging server. It’s used for

load balancing, availability fail safes, and more.

Using Asynchronous Requests

Determining when to use synchronous vs asynchronous calls has a large impact on application performance. And,

depending on the circumstance, calling a service synchronously can cause significant performance bottlenecks for other

services and for the combined application.

By using asynchronous requests, a service can make a request to another service and return immediately while that request

is fulfilled. That allows for more concurrent work within individual services, and more efficient requests for the combined

application.

Keep in mind, developers still need to make sure that the receiving service can fulfill those asynchronous requests within an

acceptable timeframe, and scale to accommodate request load.

ASYNCHRONOUS MESSAGING TECHNOLOGIES

Some of the most popular open source asynchronous messaging systems used in microservices architectures:

CLIENT

SERVICE A SERVICE B SERVICE C SERVICE D

CLIENT

SERVICE A SERVICE B

SYNCHRONOUS ASYNCHRONOUS

https://kafka.apache.org/
https://www.rabbitmq.com/
https://activemq.apache.org/

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

Mind Your Antipatterns

Sometimes trying to solve a problem can create a

bigger problem. For example, adding timeout and

retry functionality to a service sounds like a good

idea, but if another service it calls is chronically slow

and always triggers the timeout, the retry will put

additional stress on an already overloaded service,

causing a bigger latency issue than the original fix

tried to resolve.

Before implementing resiliency techniques in one

service, carefully consider how it will impact other

services and the application as a whole. Service

meshes like Istio can make overall resiliency easier

by enforcing consistency and avoiding one-off

implementations.

AN ASYNCHRONOUS ANTIPATTERN

As we discussed in the last section, asynchronous

calls can help to avoid a single slow response slowing

down the entire response chain. But developers also

need to be careful to avoid antipatterns with these

asynchronous calls.

For example, a developer puts a message queue

between two services to handle short term call bursts.

This helps the service to handle more calls without

getting overloaded, but it doesn’t fix the underlying

issue — the service is still slow.

In the end, the message queue quickly maxes out,

calls start to fail, and the dependent services are more

difficult to restart.

To make a bad situation worse, making upgrades to

the receiving service is now more difficult because

messages in an older format may need to be

processed alongside a newer format.

WHITE PAPER

11 | Developer’s Guide to Microservices Performance

Throttling Overactive Services

Is one of your microservices receiving too many

requests to handle? Throttling requests or using fixed

connection limits on a service by service basis can

help your receiving services keep up. Throttling also

helps with fairness by preventing a few hyperactive

services from starving others.

While throttling does ensure availability of the service

for your application, it will make it work slower. But

it’s a better alternative than having the application

fail altogether.

TECHNOLOGIES FOR THROTTLING,
LOAD BALANCING AND SCALING

Developers don’t need to reinvent the wheel with

every microservice or microservices application.

Using a service mesh like Istio or Linkerd can help

developers to create better performing microservices

— without the overhead of in-house solutions for

throttling, load balancing, and scaling. At a logistical

level, they can help add network configuration,

security, traffic management, and telemetry to your

application.

At the application level, these services can help to

apply resilience patterns like load balancing, retries,

failover, and circuit breaker.

For deployment, these services can help support

canary and blue/green releases for better overall

application quality.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

12 | Developer’s Guide to Microservices Performance

Istio provides a dedicated layer that facilitates

communications between microservices, including

security, observability, and traffic management.

Linkerd is a service mesh that provides

runtime debugging, observability, security,

and traffic management via proxies attached to

individual services.

Managing Third-Party Requests

Even if your microservices are running efficiently

with one another, sometimes the limitations of a

third-party service or API can cause significant

issues for an application.

Using text detection in images? Your requests to

the Google API will play a role in your application

performance. Authenticating your users with

Facebook? If they’re having a slow response, now you

are too. Using Amazon Polly for voice recognition?

You get the picture.

With the increasing presence of third-party services and

APIs within applications, it’s important that developers

take proper action to ensure these services and APIs

don’t lead to application failure.

KNOW THE LIMITATIONS

It’s important for developers to understand the

limitations of a third-party service before relying on

them at scale. Can they keep up with your expected

demand while maintaining the performance you require?

Is their stated SLA compatible with yours? For example,

if you promise 99.99% uptime, but one of your service

providers only guarantees 99.9%, your customers will

eventually be disappointed and blame you.

ENSURING RESILIENCY

Developers also need to be proactive. Applications

must be resilient to slow third-party requests by utilizing

best practices like caching, pre-fetching, or using

resiliency patterns like the circuit breaker to prevent

services from causing cascading failures.

Avoiding Application Ceiling

Even properly configured and optimized services can

have performance ceilings.

If you’ve already determined that all your requests are

necessary and optimized, and you’re still overloading

your service, consider load balancing across additional

containers to improve scalability.

You might even consider autoscaling to dynamically

adjust to incoming request load by adding and

removing containers as necessary. If you go this route,

be sure to implement a maximum container count and

have a plan for defending against DDoS (Distributed

Denial of Service) attacks, especially if your application

is deployed in a public cloud.

SERVICE

https://istio.io/
https://linkerd.io/

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

13 | Developer’s Guide to Microservices Performance

That said, even the best-planned and coded

applications and services have hardware ceilings.

Applications and services that need to maintain large

databases with true ACID transactions, for example,

will always need to have enough processing power to

fulfill requests to those databases — even if that load

is balanced across multiple servers.

Consider clustering technology and potentially

moving some of your services to NoSQL solutions

that can offer scale higher than an RDBMS. However,

be prepared to deal with eventual consistency and

compensating operations if you need ACID-like

transactions across services.

Choosing the Right Data Store

Microservices give the flexibility to use multiple

data stores within a single application. But picking

the wrong kind of storage can cause significant

performance issues.

Imagine the hardware cost for a streaming video

service if they used a RDBMS to dynamically update

content recommendations for 169 million users based

on their individual viewing habits!

It’s important for developers to choose data stores

for microservices at a service by service level and to

make sure that the selected data store is the best tool

for each particular job.

DATA STORES FOR CHANGING,
UNSTRUCTURED DATA

Using a RDBMS for a service that processes a large

amount of changing, unstructured data will mean

working against the primary benefit of the relational

database architecture – consistency. Keeping data

consistent across these rapidly changing databases

would be unnecessary and expensive.

In these cases, it’s better to use a scalable and

schemaless NoSQL data store like MongoDB

or Cassandra.

DATA STORES FOR CONSISTENT DATA

STRUCTURED DATA UNSTRUCTURED DATA

Phone number, zip code, date of birth Text, audio, videos

STRICT CONSISTENCY

Write
from client

Acknowledged
to client

Write propagated
through cluster

Internal
acknowledgement

• System always returns latest write
• Guaranteed data resiliency

Node 1 Node 2

EVENTUAL CONSISTENCY

Write
from client

Acknowledged
to client

Eventual write
propagation

• System eventually returns latest write
• Potential for data loss if node fails

Node 1 Node 2

Structured vs Unstructured Data Strict vs. Eventual Consistency

https://learn.g2.com/structured-vs-unstructured-data
https://www.cohesity.com/blog/strict-vs-eventual-consistency/

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

14 | Developer’s Guide to Microservices Performance

Traditional relational databases choose to be

consistent even if it means becoming unavailable

during a hardware or software failure. If your

use case allows for occasional downtime and

ACID transactions are paramount, or eventual

consistency causes more problems than it’s worth,

consider a tried and true RDBMS. These workhorse

databases don’t grab headlines like they used to,

but they’re still as valuable as ever when the use

case fits.

Caching Database Calls

When a service requests a field of data across

multiple databases, each of those databases has

the capacity to hold up that request.

If that information is frequently accessed by

hat service, consider caching that information in

an easily accessible place that doesn’t rely on

multiple databases.

Making sure your request is targeted at a single,

cached database, with rules that add request

destinations upon a set request time limit can help

make sure your database calls never timeout, but

also don’t cause excessive calls.Memcached is

used in high performance and distributed systems

to store arbitrary data in-memory – allowing for

better utilization of available memory. Memcached

is used primarily for key-value memory structures.

Redis, like Memcached, is used for high performance

in-memory data storage but is more functionally

robust. It supports Hash, List, String, Set, and Sorted

Set data types, and can also swap cached memory to

disk if not used frequently enough to warrant storage

in-memory.

Some database systems offer native in-memory

caching. Cassandra, for example, can be configured

to store data in-memory for Key and Row data types

while compacting SSTables by default.

CACHING AND PROJECTIONS

In Event-Driven Architectures (EDA), the system of

record may be an ordered collection of events that

already happened (e.g., “customer created”, “order

shipped”, “added $10 to account ABC”).

To determine someone’s current account balance,

you might have to look through millions of records

to sum all the deposits and withdrawals for a

particular account, which is obviously too slow for

a waiting user.

In this case, you might create a “Projection” from

the main event stream that contains only account

balance-related transactions and store it in another

data store more suited for quick lookups. At that

point, you could specifically cache account balances

in an in-memory data store like memcached or Redis

for even faster queries if that query becomes your

primary bottleneck to performance.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

15 | Developer’s Guide to Microservices Performance

Memcached is used in high performance and distributed systems to store arbitrary data in-

memory – allowing for better utilization of available memory. Memcached is used primarily

for key-value memory structures.

Redis, like Memcached, is used for high performance in-memory data storage but is more

functionally robust. It supports Hash, List, String, Set, and Sorted Set data types, and can

also swap cached memory to disk if not used frequently enough to warrant storage

POPULAR CACHING TECHNOLOGIES

Caching can be complicated, but open-source technologies like Memcached and Redis can make caching easier to integrate.

Some database systems offer native in-memory caching. Cassandra, for example, can be configured to store data in-

memory for Key and Row data types while compacting SSTables by default.

Database Connection Pools

One of the most effective ways to reduce overhead in

microservices that access and alter databases (aside from

caching) is to pool their connections to that database.

A typical service will establish a connection to a data

store, issue some queries, and close the connection very

quickly. Connecting and disconnecting adds quite a bit

of overhead to a short-lived connection, thus limiting the

amount of work that can be done. A connection pool

typically establishes a fixed set of connections to a data

store when it starts up and lets the calling service re-use

an existing connection from the pool instead of opening

and closing them with every request. The result is a much

more efficient service.

APPLICATION
PHYSICAL

CONNECTIONS

Thread 1
Thread 2

SESSIONS

SERVER 1

SERVER 2

POOL 1

POOL 2

Database Connection Pool Example

https://memcached.org/
https://redis.io/
https://docs.oracle.com/cd/E18283_01/appdev.112/e10646/oci09adv.htm

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

16 | Developer’s Guide to Microservices Performance

CONNECTION POOLING FRAMEWORKS

While in the past, some hardy developers may have

needed to create their own connection pooling

services, there are now frameworks that make

connection pooling in Java easier to implement.

Popular connection pooling frameworks for

Java include:

•	 Apache Commons DBCP – Implements

database connection pooling for JDBC.

•	 HikariCP – High-performance JDBC

connection pooling.

•	 C3PO – Library that augments JDBC

drivers for the enterprise.

When Microservices Fail
Despite all the planning and painstaking

development involved in creating a microservices

application, microservices can and will fail. With

enough services and load on the system, the

application will always be in a state of partial failure

and recovery due to hardware issues, networking

glitches, virtual machine crashes, bursty traffic

causing timeouts, and the like. It’s no longer a matter

of “if” or “when” something will go wrong — that’s

a given — but rather how to architect for automatic

self-healing.

It’s up to development teams to create applications

that can handle failure gracefully. What that means

depends on the application. For some, that may

mean maintaining full functionality and adequate

performance during service failures. For others, it

may mean just preventing one failure from causing

cascading failure of the application.

How developers and application architects prevent

those failures varies from project to project. But the

core concept of application resiliency, and the

resiliency patterns and techniques used to preven

these failures, should be a major topic of discussion

for every development team.

What Are Resiliency Patterns?

Resiliency patterns are a type of service architecture

that help to prevent cascading failures and to

preserve functionality in the event of service failure.

Common resiliency patterns used in application

development include the bulkhead pattern and

circuit breaker pattern.

In this section of the white paper, we’ll look common

failure points in microservices applications, how to

predict where your application may fail, and look at

the resiliency patterns you can use to help prevent

cascading and otherwise catastrophic failures for

your application.

PREDICTING RESILIENCE ISSUES

Many of the performance issues and fixes we’ve

looked at so far in this white paper can be looked at as

band-aids for performance problems. Just because

you have optimized requests from one service to

another service doesn’t mean you’ve addressed the

underlying architectural issue within the application.

As Mark Richards points out in his book, Finding

Structural Decay in Architectures, prevalent

enough issues — like unintended static coupling

between services — can be indicative of a larger

architectural mismatch.

Because many, if not most, microservices applications

are transitioned from existing monolithic applications,

there are bound to be a few cases where making that

transition was the wrong decision.

https://commons.apache.org/proper/commons-dbcp/
https://github.com/brettwooldridge/HikariCP
https://www.mchange.com/projects/c3p0/

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

Using visualization tools to make sense of those complex

traces and how they progress through the microservices

that comprise the application helps engineers to identify

and bolster application failure points proactively instead

of reactively.

USING RESILIENCE PATTERNS

In the next section, we’ll cover three resilience patterns

that can help developers to engineer failure-resistant

microservices applications.

Circuit Breaker Pattern

Applications often rely on remote resources, like third-

party services, as a key component of their program.

But what happens when one of those remote resources

times out upon request? Does your microservice

continue calling that resource in an endless loop until

it fulfills that request? What happens when multiple

services are requesting that same remote resource?

USING THE CIRCUIT BREAKER PATTERN

The circuit breaker pattern, just like the electrical

engineering concept, would prevent subsequent

requests from occurring – preventing the service from

WHITE PAPER

17 | Developer’s Guide to Microservices Performance

Identifying Failure Points

If you have been troubleshooting your application

and individual service performance, you have already

likely identified a few services that either receive or

send a lot of requests. Optimizing those requests is

important and can help to prolong availability. But,

given a high enough load, the services sending or

receiving those requests are likely failure points for

your application.

“100% is the wrong
reliability target for

basically everything
(pacemakers and anti-

lock brakes being notable
exceptions).”

- Betsy Beyer, Site Reliability Engineering:
How Google Runs Production Systems

For enterprise microservices applications like

Uber, where engineers are using thousands upon

thousands of microservices, tracing requests across

these services can be hopelessly complex – with

traces that have hundreds of thousands of spans.

Failure threshold
reached

CLOSED

entry / reset failure counter

do / if operation succeeds
 return result
 else
 increment failure counter
 return failure

exit /

Timeout timer
expired

Operation failed

HALF-OPEN

entry / reset success counter

do / if operation succeeds
 increment success counter
 return result
 else
 return failure

exit /

OPEN

entry / start timeout timer

do / return failure

exit /

Source: https://www.infoq.com/presentations/uber-microser-
vices-distributed-tracing/

Circuit breaker pattern example

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

18 | Developer’s Guide to Microservices Performance

getting overloaded. Additionally, by monitoring how

many requests to that service have failed, a circuit

breaker pattern can prevent additional requests from

coming into the service for an allotted time, or untiL

the amount of failed requests by time have reaches a

certain threshold.

When recovering from failure, the circuit can

return incrementally to full functionality to prevent

overloading the service with a large amount

of requests.

WHEN TO USE THE CIRCUIT BREAKER PATTERN

The circuit breaker pattern can add significant

overhead to your application, so it’s best to use

sparingly, and only in cases where you’re accessing

a remote service or shared resource prone to failure.

If you user a service mesh like Istio, it’s easy to

experiment with various resiliency patterns, including

Circuit Breaker, to see which techniques work best for

each service.

Bulkhead Pattern

When architecting microservice-based applications,

it’s easy to overload specific services within the

application. As we’ve outlined throughout this white

paper, overloading these services can lead to slow

applications at best, and catastrophic failures at

worst.What is the Bulkhead Pattern?

The bulkhead pattern is an application resiliency

pattern commonly employed in microservices

applications. It’s used to isolate services and

consumers via partitions in order to prevent

cascading failures, give sliding functionality when

services fail vs total failure, and to prioritize access for

more important consumers and services.

In the example below, we see the bulkhead pattern

applied to a database cache. In the non-partitioned

database cache, the failure of the cache leads to

the services interacting directly with the database,

leading to application failure. But in partitioned

example, we can see that the partition for service c

has failed independently, resulting in the failure of

service c without immediately causing failure in the

other two services.

If those cache partitions were configured as a cluster

sharing the same data in each instance, then the

service could be configured to access one of the

remaining partitions upon failure.

CACHE
PARTITION

CACHE
PARTITION

DATABASEUSERS

CACHE
PARTITION

SERVICE A

LOAD
BALANCER

SERVICE B

SERVICE C

DATABASEUSERS

SERVICE A

LOAD
BALANCER

SERVICE B

SERVICE C

Bulkhead pattern applied via cache partition

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

WHITE PAPER

19 | Developer’s Guide to Microservices Performance

TIPS FOR USING BULKHEAD PATTERN

While useful for preventing catastrophic failures,

the bulkhead pattern does add complexity to

your application. For teams working on services

independently, understanding where each service

fits within the bulkhead pattern and how their service

is partitioned relative to other services is crucial to a

performant application.

Additionally, keep in mind that this pattern — while

great for resiliency — can add another performance

hurdle for your application.

Stateless Services

What happens if a service being called upon fails

in your microservices application? If there isn’t an

alternative database or service that can fulfill that

request, additional services can fail, leading to a

cascading failure of the entire application.

But what if you could have a copy of that service

ready to go if the primary fails? Or another one that

could be spun up on demand instantly if that second

service fails?

USING STATELESS SERVICES FOR RESILIENCY

Stateless services can achieve that function Because

they depend on inputs, and don’t actually hold data,

any copy of that service can serve just as well as

the original.

In addition, these services can be instantiated

dynamically as the need arises instead of existing

permanently within the application – meaning less

resource usage for the service and application.

As an alternative, you can imagine a service that needs

to serve many requests for non-persistent data, but the

demand is lumpy, coming in bursts. But when those

requests are issued, using asynchronous requests or

request buffers can’t fulfill the requests fast enough for a

good end-user experience.

An engineer could allocate a large chunk of resources

to that service, add additional hardware to

accommodate in case of high loads, or they could

employ a stateless, scalable service that can spin up

new services to fulfill requests during heavy load, using

minimal extra resources and only when scaled.

WHEN TO USE STATELESS VS STATEFUL SERVICES

Stateless services are ideal for high availability,

scalability, and performance, but obviously can’t be

used for everything. In fact, they’re only possible if

the data they act upon is provided by the caller. For

example, converting a video from one format to another,

text-to-speech generation, or image recognition.If you

do need to store state, as the majority of services do,

carefully consider where to put it. If you store it in the

local container, access will be fast, but what happens if

the container crashes and the data is corrupted? If you

store in a NAS or SAN, will there be consistency issues

if multiple services read and write to it concurrently?

If you use a cloud storage service, how will that affect

latency? As with most questions, the answers are

specific to each service — use the best tool for the job

as opposed to forcing every problem to look like a nail if

you own a really good hammer.

www.jrebel.com JRebel by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0320AD20)

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome com-
plex product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio in-
cludes solutions for Agile planning & ALM, API management, automated mobile & web testing, embeddable analytics, open source support,
repository management, static & dynamic code analysis, version control, and more. With over 15,000 customers, Perforce is trusted by the
world’s leading brands to drive their business critical technology development. For more information, visit www.perforce.com.

WHITE PAPER

20 | Developer’s Guide to Microservices Performance

Closing Thoughts

In this white paper, we’ve talked about just some

of the ways that developers can improve performance

in microservices.

But it’s important to note that while many of these

ideas can improve application performance, giving

your developers greater visibility into the application

as individual services are developed, and continually

communicating about changes happening within

the application, can also help teams to create more

performant applications.

Lastly, all the troubleshooting in the world won’t fix

an architectural mismatch. Microservices bring many

benefits, but they’re not a one-size-fits-all solution.

If you have any questions about the material covered

within this white paper, be sure to reach out to us on

Twitter, LinkedIn, or via the JRebel contact us page.

Thanks for reading,

The JRebel/XRebel Team

Find Performance Issues With XRebel,
Fix Them Faster With JRebel

Want to see how XRebel and JRebel combine for

lightning-fast performance improvements during Java

application development? Request a trial and see the

difference for your team.

REQUEST TRIAL

https://www.jrebel.com/products/free-trial

https://twitter.com/JRebel_Java
https://www.linkedin.com/company/jrebel/
https://www.jrebel.com/contact-us
https://www.jrebel.com/products/free-trial

