
www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

© Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.www.perforce.com

Introduction

Git allows developers to work together efficiently. It also allows bad behavior,

unless development leaders do something about it. This can lead to potential

loss of intellectual property and significant security issues. This white paper

covers how to lock down Git and mitigate these risks.

W H I T E PA P E R

How to Lock Down Git
A CTO’s Guide to Avoiding Bad Behavior and Minimizing Git Security Risks

WHITE PAPER

How to Lock Down Git

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

Contents

Native Git Lacks Security.. 3

5 Best Practices For Tightening Security in Native Git... 4

Front-End Git Tools Add Layers of Security.................. 5

How to Truly Lock Down Git and Protect IP.................. 6

Get Started With Helix Core With Helix4Git................ 7

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

3 | How to Lock Down Git

Native Git Lacks Security
There are no security measures in native Git. Developers

pull down entire repositories every time they need to

make changes to source code. Each time, this exposes

code to potential risks. Often, there are no secure

backups of Git servers. The only backups are the clones

of repositories sitting on developer laptops.

The utter lack of security measures makes using native

Git a major risk for company intellectual property (IP).

GIT INVITES BAD BEHAVIOR

With native Git, the responsibility is on each individual to

behave well. Developers contribute to and collaborate

on code in Git repositories. Each time they work on code,

they download the entire repository — with full history —

onto their laptops.

It makes it easy for developers to behave badly, whether

they intend to or not. That exposes the entire repository

to risk.

From Carelessness…

If a careless developer pulls down a repository, they

could unwittingly expose data to hackers.

For example, if their workstation is compromised by a

phishing attack, they could put code out where it doesn’t

belong. Another example is that they could clone from

clones — and there would be no way to know where

the IP went. Or, a developer could be careless while

executing a command. For instance, a developer could

execute a force-push, which would eliminate other

developers’ changes and history.

There is not a magical way to secure every developer’s

workstation effectively to prevent these scenarios

from happening.

As a result, the carelessness of an individual
developer can be catastrophic.

…To Malicious Intent

If a malicious developer pulls down a repository, they

could intentionally put data at risk. In some cases, this

could be a developer leaving to work for a competitor —

and taking data with them. In other cases, it could be intent

to expose data publicly.

In any case, the malicious intent of a
developer can compromise IP, as well as the
version history which could expose security

vulnerabilities in unpatched releases.

BAD BEHAVIOR LEADS TO SECURITY RISKS

Bad behavior puts codebases and IP at risk. Without proper

security measures in place, organizations risk cyberattacks,

including exfiltrations, infiltrations, and ransomware.

According to the 2018–2019 Global Application

and Network Security Report, 93% of organizations

experienced cyberattacks over the course of a year —

leaving just 7% who hadn’t.

Once hackers have infiltrated a system, they can go

unnoticed for years. In a 2018 Marriott data breach, it

was reported that hackers went unnoticed for four years.

This enabled hackers to pull off one of the largest thefts of

personal records of all time.

Data stored insecurely is data lost. And using Git can expose

organizations to the same sort of security risks — and theft of

data (exfiltration)— that Marriott experienced. That is why it

is time for development leaders to do something about it.

https://www.securityinformed.com/docs/opdf/news/radware-global-application-network-security-report-cost-cyberattack-exceed-1-67-million-co-1517409453-ga.1547791047.pdf
https://www.securityinformed.com/docs/opdf/news/radware-global-application-network-security-report-cost-cyberattack-exceed-1-67-million-co-1517409453-ga.1547791047.pdf
https://www.nytimes.com/2018/11/30/business/marriott-data-breach.html

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

4 | How to Lock Down Git

DO SOMETHING ABOUT IT

It is time to do something about Git security — and

put a stop to bad behavior for good.

There are three options for securing Git:

1.	 Apply security best practices to native Git.

2.	 Use a front-end Git tool for additional

security features.

3.	 Switch to a more secure version control tool.

5 Best Practices For Tightening
Security in Native Git
There are some security best practices that can be

implemented in native Git.

Warning: Implementing these security best practices

will require a manual effort. This will take some time,

and even then, it’s possible to leave a window open

for bad behavior.

1. ENSURE SECURE ACCESS

Ensuring secure access is a crucial measure for keeping

Git secure. While native Git doesn’t provide access

control options, access to Git repositories can be

controlled in a few ways.

This can be done most simply by setting user

permissions, such as:

•	 Developers: read/write access.

•	 Users: read-only access.

Another way to ensure secure access is at the server

level. This can be done by restricting IP addresses or

requiring VPN-only access. It can also be done by having

developers work on VDI (virtual desktop infrastructure)

However, these secure access options are
light — and not without risk.

While they provide some security measures, they can

still allow for insecure access. And with the case of VDI, it

makes developers feel like big brother is watching them.

It might also be slow, depending on connectivity.

2. DOCUMENT SECURITY POLICIES

Most organizations have documented security policies to

protect IP. It is wise for organizations using native Git to

document a subset of security policies around Git. This is

particularly important for regulated organizations.

Security policies include clear, comprehensive, and

well-defined plans, rules, and practices. These policies

regulate access to systems and the data in them. It is

common to include high availability and disaster recovery

policies, along with a plan for the event of a data breach.

Documenting security policies is
a good step.

However, it is equally important to make sure employees

using Git are aware of the security policy. If a security

policy is documented, but no one knows about it, does

it matter?

3. AUTHENTICATE USERS PROPERLY

Many Git servers authenticate users by using SSH public

keys. These are designed to help prevent “man-in-the-

middle” attacks. (These are attacks where a hacker

intercepts and possibly alters communications between

two parties.)

However, this only works to protect
IP when everyone on the team uses

SSH keys properly.

That is, if everyone keeps their SSH key private. If they

hand the key to someone else — for example, by posting

it on a Slack channel to have a colleague help solve a

problem — it compromises the system.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

5 | How to Lock Down Git

That means a hacker could obtain an SSH key and push/

pull to/from the repositories.

4. SECURE GIT REPOSITORIES

There are two schools of thought around the
best way to secure Git repositories.

Small projects fare better keeping their code in one

central Git repository, complete with SSH keys and

defined permissions.

Larger projects are often too big for one repository. They

often involve multiple development teams working on

different pieces. In this case, it is best to break the project

up into multiple repositories. Permissions can then be

assigned only to the repositories that developers need

to access. This approach is often better for regulated

organizations with audit concerns.

However, it is far more time-consuming to set up and

administer multiple Git repositories manually.

5. USE SSL CERTIFICATES

Using SSL (Secure Sockets Layer) certificates is another

way to improve Git security. It typically only takes a few

minutes to get an SSL certificate.

There are two options:

•	 Global SSL certificate.

•	 Project-level or local SSL certificates.

A global SSL certificate is typically the fastest
— and the most prone to carelessness.

A Git server can be put on a virtual machine with

everything open (no security groups). This means anyone

can access it, even with a SSL certificate in place.

Project-level or local SSL certificates are better, but it will

take longer to get a unique SSL certificate for each project.

WHEN SECURITY BEST PRACTICES AREN’T
ENOUGH…

Teams turn to adding tools to Git when security practices

aren’t enough. Many organizations use front-end Git tools

to add more layers of security. Some also use network

security tools to create defense in depth.

Front-End Git Tools Add Layers
of Security

INCLUDING GITHUB, GITLAB, BITBUCKET,
AND HELIX TEAMHUB

Front-end Git tools are among the most popular —

including GitHub, GitLab, Bitbucket, and Helix TeamHub.

Over time, each of these tools have added and enhanced

security features.

The security features of front-end Git tools are fairly

similar, including:

•	 Granular roles ensure users can only see the projects

they need to see.

•	 Delegated user management prevents shadow IT.

•	 LDAP/Active Directory provides more secure

authentication.

•	 2FA (two-factor authentication) adds another layer

of authentication.

•	 SSO (single sign-on) and SAML (Security Assertion

Markup Language) also ensure secure identity and

access management.

•	 IP address whitelisting allows certain users access

(while keeping others out).

•	 Branch protection restricts who can push to branches.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

6 | How to Lock Down Git

GitHub, GitLab, and Bitbucket allow public repositories.

This means that with the flip of a switch, everyone in the

world can access a repository. Even read-only access in

public repositories could be damaging.

Helix TeamHub, however, does not allow public

repositories. Repositories can be shared publicly within

a company (where everyone who can see it is identified/

logged in) — but kept private from the rest of the world.

This is a better option for enterprises concerned about

ensuring the security of their repositories and protecting IP.

Using any of these front-end Git tools is a step up from

native Git. However, these security features can only do

so much, especially if there is only one repository. It is

impossible in Git to provide the file/folder level access

control that enterprises need. This forces unnecessary

splitting of repositories or relaxed security measures.

BUT THESE SECURITY MEASURES OFTEN
AREN’T ENOUGH

It is often easy for hackers to break in. And in some

cases, they do not need to hack at all. They simply

steal credentials.

Infamously, in 2014, data from 50,000 Uber drivers

was stolen after credentials were found on public

GitHub repositories.

In this case, an Uber employee uploaded the credentials

and forget them there. Hackers got access to these

repositories, found usernames and passwords, and used

them to access internal Uber systems. That is where they

found and took PII (Personally Identifiable Information).

Uber wound up paying a ransom to these hackers.

The Uber GitHub breach is not an anomaly.

An analysis of public GitHub repositories found that very

likely well-meaning employees are unknowingly sharing

access codes on GitHub — and making themselves

vulnerable to cyberattacks. Developers publish their

code to GitHub to share with others and neglect

to remove the credentials that are hard-coded into

the project.

Typically, this happens more on open source projects.

Although, some of these credentials were linked to

Fortune 500 companies, payment providers, internet

service providers, and healthcare providers.

This is troubling. As companies increase in size, it is

more difficult to see what exactly the developers are

doing. That is why it is key to amplify security now —

beyond the capabilities of front-end Git tools.

How to Truly Lock Down Git and
Protect IP
Company IP is important. With Git (both native Git

and a front-end Git tool), all a hacker needs is a

username and password to pull down an entire

repository. In some cases, they might not even need

that — which is frightening.

Incorporating multiple layers of security is the best

way to protect company IP. By using Helix Core with

Helix4Git, teams get multiple layers of security.

HELIX CORE WITH HELIX4GIT DELIVERS
UNPARALLELED PROTECTION

Using Helix Core with Helix4Git is the best way to

lock down Git and protect IP.

Secure & Integrate With Your IdP

To protect IP, many companies integrate their version

control system with Identity Providers (IdPs) to provide

2FA. Other VCS only protect web-based code hosting

that does not extend to the command line . This leaves IP

exposed — especially on Git servers.

https://qz.com/674520/companies-are-sharing-their-secret-access-codes-on-github-and-they-may-not-even-know-it/
https://www.perforce.com/products/helix-core
https://www.perforce.com/products/helix4git

WHITE PAPER

| How to Lock Down Git

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

7 | How to Lock Down Git

Helix Core is the only version control provider to secure

the command line. With Helix Authentication Service

(HAS), teams can streamline authentication. It works

with clients, plugins, and the command line. HAS offers

robust support for OIDC and SAML 2.0 authentication

with your IdP of choice, replacing your existing LDAP

and/or Active Directory (AD) configuration. This service is

internally certified with Microsoft Azure Active Directory

(AAD), Okta, and Google Identity. It is also known to be

compatible with other IdPs such as Auth0, OneLogin, and

Google G-Suite.

Granular Permissions

Access control is an important security feature for version

control systems. It is used to define who can access what.

This ensures that developers can work on their projects.

And it keeps them from seeing projects that they don’t

need access to.

To truly protect IP, teams need more granular permissions.

In native Git, developers typically get access to the

entire repository. Even with front-end Git tools, access is

typically granted at a repository level.

Helix Core takes permissions a step further.

They can be set at an individual file level, assuring

greater security for files. Access can be limited by user

and/or IP address. And Helix Core boasts 8 different user

access levels — list, read, open, write, review,

owner, admin or super.

Immutable Change History

Maintaining a complete change history is another

important security feature. It should include who changed

what and when. This is especially important when there

are multiple or complex changes. Native Git does not

protect the change history, making Git particularly

dangerous for regulated industries.

Helix Core tracks every change and maintains a

complete version history.

This protects the repository. If something goes awry

after a change, the repository can be reverted back to

its previous state.

In addition to protecting the repository, maintaining

an immutable change history is important for passing

audits. Regulated industries, in particular, need to

maintain a reliable, traceable, and immutable change

history for compliance purposes (including PCI DSS

and ISO 26262).

Secure Git Repositories

An important security measure for Git repositories is the

ability to back them up. However, native Git only backs

up on developer laptops.

By using Helix4Git (a Git server inside a Perforce server)

with Helix Core, teams gain the backups they need for

HA/DR (high availability/disaster recovery).

That means teams using Git can mirror that code into

Helix4Git and ensure that it is safe. Developers can gain

access to the code. No one sees all of it. And Git code

can go into the build pipeline seamlessly, alongside

code and other assets from Helix Core.

https://www.perforce.com/downloads/helix-authentication-service
https://www.perforce.com/downloads/helix-authentication-service

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome complex
product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio includes
solutions for Agile planning & ALM, API management, automated mobile & web testing, embeddable analytics, open source support, repos-
itory management, static code analysis, version control, IP lifecycle management, and more. With over 20,000 customers, Perforce is trusted
by the world’s leading brands to drive their business critical technology development. For more information, visit www.perforce.com.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

8 | How to Lock Down Git

Get Started With Helix Core
With Helix4Git
While many organizations invest in firewalls, IDS

(intrusion detection systems), and antivirus software, they

neglect to invest in secure version control. This puts their

important company IP at risk.

Your IP deserves the best protection. You can get it with

Helix Core (and Helix4Git).

Using Helix Core with Helix4Git is the best way to lock

down Git. With granular permissions and multiple

authentication options, you will be able to ensure that

only those who need to access your repositories will be

able to. Helix Core also provides a complete history of

changes — that no one can ever obliterate.

With all of these security measures together, your

valuable IP will receive the best protection possible. To

get started, contact us.

CONTACT US

perforce.com/products/helix4git/contact-us

http://perforce.com/products/helix4git/contact-us

