O circleci

The New Metrics CEOs Track
to Increase Speed

To move fast, you have to know more than just churn

0 CEO would think of running a startup

without knowing MRR, churn, or burn rate.

But in the battle to move fast, you've got to
be able to push a product update out immediately
when something in the market changes (as it al-
ways does). If you can be fast enough that you can
take advantage of those changes--often measured
in hours--you'll gain key market share against any
competitor that can’t adjust as readily.

To maximize speed, CEOs should think about
non-traditional metrics like commit-to-deploy time,
queue time, and test coverage. These metrics can
give CEOs a sharper image of their software trajec-
tory, and of what may be holding them back.

Commit-to-Deploy Time (CDT):

This is the time it takes for code to go from commit
to deploy. In between, it could go through testing,
QA, and staging, depending on your organization.
The goal of measuring CDT is understand how long
it’s taking code to get from one end of the pipeline
to the other and what roadblocks you’re encounter-
ing, if any.

Ideally, if you're doing CI best practices, tests are
good quality, have been automated, and you can get
from commit to deploy-ready status in mere min-
utes, even seconds for a microservice. If you have

a largely manual QA process, that will likely mean
your commit-to-deploy time is longer and can reveal
where you have room to improve.

Most fast-moving organizations (e.g. Facebook,
Amazon) deploy hundreds of times a day. For small-
er organizations, daily deployments would be a good
goal. The smaller your commits are, the faster they
can get into production, and the faster you'll be
able to fix things when they go wrong... and at some
point, they definitely will go wrong. More frequent

deployments will also get your team accustomed to
doing so, which will hopefully mean they’ll get bet-
ter and faster at doing it.

How do you measure CDT? Timestamps. For ev-

ery commit that makes it through code review and
merged, record when that happened. Using git
means you get this sort of granular information for
free. On the deploy side, you'll do the same thing —
deployed means your users can see/use it. Dig into
the documentation for Heroku or AWS to figure out
the exact time the code went live. The “average”
CDT really depends on the size and complexity of
your application, but less is nearly always more, so
you'll want to do what you can to push that time
down.

These types of improvements could be more of the
technical side (e.g. our tests are flaky) or more
process-oriented (we use complex integration tests
where only unit tests are needed) or some combina-
tion of the two. At any rate, your goal should be to
incrementally improve your commit-to-deploy time.

11

For smaller organizations, daily
deployments would be a good goal. The
smaller your commits are, the faster
they can get into production.

2

Build Time

One of the worst — but somewhat unavoidable —
wastes of time is when engineers and developers sit
around waiting for tests to finish running. The big-
ger and more comprehensive these tests, the more
time they tend to take. No matter how you stack
them, you've got well-paid staff checking Twitter
or getting distracted by GIFs on Slack instead of
coding.

Let’s look at the costs: if you have 2 developers
waiting on a test, both paid $50/hour (~$100,000
per year), then a 10-minute build time will cost you
about $17 in lost productivity. That may seem like
chump change, but if each dev runs 5 similar tests
a day, it would add up to $833 a week ($43,000 a
year). To put that in larger context, some tests can
take an hour to run. In addition to these obvious
immediate costs, there's the hard-to-quantify “lost
opportunity” cost of not getting to market sooner,
and the mental “switching cost” of devs waiting
around, then hopping back into development.

1

Placing related tests together
can prevent unnecessary setup
and teardown phases.

2

Build time actually encompasses both the running
of tests, as well as any preparation needed to make
those tests run. These preparations include creating
a test database, seeding that database with test
data, and setup/teardown of the database between
test suites so you're not tainting your data.

Like CDT, a “good” build time depends on context,
but lower is nearly always better. Placing related
tests together can prevent unnecessary setup and
teardown phases. CI best practices also recommend
placing faster tests first in the workflow: if there
are errors, you want to catch them as fast as possi-
ble, cancel the build, and fix them.

Queue Time

More subtle than build time is the amount of time
engineers have to wait before their build even exe-
cutes. This metric is highly dependent on the size

of your organization, as well as the number of simul-
taneous features in development. It can be further
exacerbated by running builds on each commit which
is, ironically, exactly what you should be doing.

But long queue times are expensive. While engi-
neers could work on another project, they run the
risk of losing valuable context on the feature they
just wrote. Instead of focusing on their next proj-
ect, they'll be tied to the change they’re waiting to
test. What makes this worse than build time is that
engineers can interrupt a build if a test fails, cutting
short the “maximum build time”; queue times grant
no such shortcuts.

For every change that’s ready to be tested, track
how long it takes to get to the front of the queue.
This can be as simple as asking engineers to record
how long they spend waiting before their build be-
gins executing.

Keep queue times low and allow engineers to move

on with their lives.

How Often Master Is Red

Developers use the ‘master branch’ as a starting
point for all new work. This is the main source of
truth, so if it goes “red”, it means everyone’s stuck.
No one can ship. The entire delivery pipeline grinds
to a halt. If you have someone who's trying to ship a
key security fix, they’ll have to wait until ‘master’ is
fixed.

There are many organizations where if ‘master’
breaks, it can take hours to fix. That’s not where you
want to be. If organizations don’t focus on fixing a
red ‘master’ ASAP, it indicates a few things:

Master can easily go red if you have unstable test
suites or flaky tests. The percentage of your code-

base that’s covered by tests will also determine the
likelihood of master going red: bad test coverage
leads to broken builds.

Long-running feature branches can end in sadness
and merge conflicts. The bigger the changeset, the
more likely it is you’'ve diverged from what’s hap-
pening elsewhere in the code. One CI/CI principle to
help avoid this is committing small sets of changes
rather than doing “big bang” merges.

Leaving master in a bad state can also simply be an
indication of poor dev practices/culture. Your or-
ganization might not have enough urgency around
fixing the source of truth in the first place. While
master is red, it creates a bottleneck for commits,
increasing recovery time and delaying development.

(11

While master is red, it creates a bottle-
neck for commits, increasing recovery
time and delaying development.

bb)

One principle of continuous delivery is an emphasis
on always keeping software “green”: in a deployable
state. And if it’s not green, you fix it the minute it
breaks instead of letting it linger. Whoever broke it
should completely concentrate on resolution, bring-
ing in help from other team members if needed. This
is somewhat related to the “red button” idea from
Kanban: anyone can and should press the red button
any time they notice a defect so things can be fixed
as soon as possible. That said, once the red button
is pushed, everyone needs to get the “assembly
line” moving again ASAP.

How do you measure this? Every time master
breaks, start a cumulative timer. Divide that number
by the rest of the time in the year so far. That’s the

percentage of time master spends “red”. For more
granularity, you could break this down by month or
day. Or: calculate the average time it takes to get
master from red back to green. This should be no
more than an hour.

Keeping master green is all about preventing bottle-
necks and keeping your company nimble.

Engineering Overhead

This may seem like COGS, but it’s a little different.
Engineering overhead includes things like headcount
and how much is spent on things like licenses and
AWS, but it also includes tool maintenance. While
many CEOs track the cost of their tools per seat,
they don’t look at how much time it takes to con-
figure, maintain, or monitor those tools. Do you
have people on your engineering team whose main
function is to maintain a team the tool uses? How
many hours are engineers spending on this type of
process work vs. output?

If a tool is consistently taking a lot of time and
attention to function, you might want to re-as-
sess its value. The amount of time engineers spend
on tooling reduces the amount of time they spend
working on the product. Engineers want to work
with the best tools: don’t give them an excuse to
leave by compromising on quality of infrastructure
or tooling.

With an emphasis on feature development, time
spent maintaining existing tools can fly under the
radar. A great solution here is to require engineers
to estimate and track maintenance work in an issue
tracker like JIRA. Comparing the time spent on
these tickets to feature work can give you a rough
idea of how much engineering time is being chewed
up by inefficient process or tooling.

What Else?

These are five of the larger non-traditional metrics
CEOs should know, but here are a few more ques-
tions they should get answered to ensure they're
staying competitive:

* How many times a day are developers merging

to ‘master’?
e How often is my code in a releasable state?
¢ How much of my codebase is covered by tests?
e Have I optimized my tooling and infrastructure?

* What are the potential speed gains and savings
of alternative tooling/infrastructure solutions?

O circleci

