
Brightspot eBook
October 2020

Guide to
Headless CMS &
GraphQL

Deep Dive into Headless CMS
Architecture and the GraphQL
Query Language

2

Table of Contents

5	 The Origin of Headless CMS

7	 Considerations for Choosing Headless Architecture

9	 Benefits of Headless for Technical Teams

10	 Understanding GraphQL

16	 Getting Started: The Technical Buyer’s Checklist

3

Introduction
Today’s technical buyers live in an ever-changing
world—one that’s permanently in flux as new
technologies and methodologies emerge and
disrupt what was previously the new thing in
place to solve the next technical challenge.
Pressure to always be one step ahead has been
compounded by the need to rapidly evolve and
digitally transform.

How exactly do technical teams play a role
in successfully creating these digital-first
environments and strategies that keep their
organizations ahead of the game?

4

Technical teams are ultimately responsible for aligning technology to
support the business mission, strategy and processes. They dictate
technical standards—including code, tools and platforms—by taking
into account cross-domain considerations, long-term objectives and
business process and governance. Most importantly, these teams’
northstar is always driving transformation towards a desired future
state—building businesses not just for today, but for tomorrow.

Technical teams are, unsurprisingly, the driver of technological
innovation, and tasked with enhancing their organization’s resiliency.
They’re constantly thinking about how things could and should work
for an optimal experience—and optimal results. To put it lightly, this is
a tall order.

To meet today’s demands to be digitally nimble and transformative,
technical teams need a modern architecture that provides ultimate
flexibility in allowing their businesses to transform for the future. This
is where understanding headless CMS architecture and GraphQL can
make an impact.

This eBook explains the origin of headless CMS and why this
architecture is an increasingly appealing option for technical teams.
We’ll explain the pros and cons of the various architecture types,
considerations to make before going headless, and what role GraphQL
plays in supporting headless CMS. Throughout, we’ll detail the benefits
of headless for technical teams and provide guidance for how to select
the best CMS for an organization’s unique needs.

72% of strategists say
their company’s digital
efforts are missing
revenue expectations.*

*Gartner

https://www.gartner.com/en/executive-guidance/business-model-change

5

The Origin of Headless CMS
Headless CMS applications are on the rise—but what is headless, and where did
it come from? To help answer these questions, let’s briefly walk through the different
content management systems that are available to businesses today.

Hybrid:
Decoupled and headless architectures have paved the way for
the hybrid model. With a hybrid CMS architecture, organizations
and publishers have the ability to mix presentation or front-end
choices. The hybrid approach offers an environment that allows
users to deliver different experiences to a browser window or a
device, where both decoupled and headless CMS architectures
can be combined.

Traditional:
A traditional—or coupled—CMS tightly links the back end to the
front end. Content is created, managed and stored, along with
all associated digital assets, on the site’s back end. The back end
is also where website design and customization applications
are stored. This content management back-end and database is
bound within the same system that delivers and presents content
to the end users’ respective devices.

Headless:
Headless solutions are a subset of decoupled architecture. With
a headless CMS platform, there is no fixed front end—instead,
the solution acts as a content-only data source. This allows
developers to use a combination of their favorite tools and
frameworks to determine where and how content appears.

Decoupled:
In a decoupled environment, the back end and front end of a
website are split—hence “decoupled”—into two unique systems
that are managed separately. One system handles content
creation and storage, while the other is responsible for taking
that input and presenting it to the user through a chosen
interface.

6

The upward incline of headless CMS adoption started in 2015: the
year that the public GraphQL CMS specification was developed,
opening up headless architecture to a wider audience. GraphQL
has since become an open standard and is an important part of
what makes headless such an attractive option for CMS applications
today—more on GraphQL later!

From a broader industry standpoint, headless CMSs started to gain
traction as businesses needed a better solution to engage people
in personalized ways. Not only that, organizations and publishers
sought to be able to reach these existing and prospective custom-
ers on multiple channels across the entire buyer journey—and they
needed the flexibility to do it in the ways they wanted. From tra-
ditional web-based applications to emerging technologies like VR
or smart-home devices, headless offers an adaptable solution for
future-proofing a business’ ability to deliver the best possible expe-
rience regardless of device

Today, across all of these channels, 71% of customers crave a
consistent experience, yet only 29% say they actually get it*. These
insights support the idea that organizations and publishers are
increasingly in need of a modern CMS solution that allows them to
reach people where they are engaging in the ways they expect—not
just today, but into the future as new channels and technologies
emerge.

*Source

https://go.gladly.com/customer-expectations-report-2020

7

Considerations for Choosing
Headless CMS Architecture
Despite the popularity and front-end freedom of a headless CMS, it
is not for everyone. Let us explain.

The best way to think about a headless approach is as a
management system that solely looks after your data, and allows
you to access that data. Other architecture types that are not
headless involve a system that will also render a webpage—or front
end.

This is explained well by looking at the four main components that
make up headless CMS:

•	 A database where content and digital assets are stored (back
end);

•	 A content management back end where content is created
(back end);

•	 An API that connects the content management back end to any
device or channel;

•	 The ability to connect to any publishing front end, allowing
organizations to have the front-end technology of their
choosing.

How technical teams approach headless architecture and which
hurdles they’ll run into depend on various factors. What type
of web application is being built? What are the dynamics and
skill sets on the team? What use cases and requirements need
to be implemented? These are all important questions and

considerations each team needs to assess and address before
taking the leap in choosing which architecture best suits their
business needs.

If headless architecture is a fit, it needs to be implemented
correctly (of course) to bring to life its intended benefits. This
requires an experienced team to ensure the back end and front
end are well planned from the beginning, so they can sync up
seamlessly later. Keep in mind, the freedom that teams enjoy
when using these systems means that they are responsible
for writing, debugging and maintaining everything that their
rendering systems require.

Traditional:
•	 Simple; ideal for text-based content
•	 Built-in themes and templates
•	 Customize your front end

Decoupled:
•	 Fast and flexible content delivery with a specified

delivery environment
•	 Rapid design iterations and simpler deployments
•	 Fewer dependencies on IT
•	 The best of both worlds in a CMS (structured back

end & flexible front end)
•	 Future-proof (integrates easily with new technology

and innovations)

Headless:
•	 Fast content delivery
•	 Provides complete control over how and where your

content appears
•	 Allows developers to use their favorite tools and

frameworks
•	 Future-proof (integrates easily with new technology

and innovations)

Hybrid:
•	 Combines the benefits of decoupled and headless

with ability to mix presentation or front-end choices,
allowing for the most flexibility

•	 Flexible “content-first” approach encourages content
reuse across different experiences and channels

Comparing Modern Content
Management System Architectures

Traditional:
•	 Content types and delivery channels are limited
•	 Limited programming framework
•	 More time and money required for customization,

maintenance and enhancements

Decoupled:
•	 More complex than traditional to configure and

deploy
•	 Front end development work required for design

Headless:
•	 No presentation functionality
•	 Live preview functionality requires both technical

input and front-end coordination
•	 Reliant on additional technologies for its “head”

Hybrid:
•	 Success depends on vendor implementation and

execution of feature set, capital, customer base, etc.

PROS CONS

9

A headless-only approach tends to be the best option for
organizations with robust development teams that know
their way around additional technologies required to
establish the front end.

With the right team in place—and with the architecture
implemented correctly—organizations will quickly start to
reap the benefits of a headless CMS.

What kind of benefits? With the decoupling of back-end
and front-end needs, implementations can be quicker and
development teams can accommodate changing business
requirements more easily. The front end can change
completely without impacting what’s happening in the back
end, making it simpler and faster to integrate new designs.

Businesses with multi-national sites or a network of
multisites, for example, can benefit from the ability to
centralize content management within a headless CMS,
which is then published via APIs to back-end-agnostic sites,
applications or distribution channels.

Developers can also tap into their favorite tools and
frameworks to determine where and how content appears,
providing freedom and flexibility to pave their own way
forward.

•	 Agility: Separation of the presentation layer from
the platform lets teams move faster, while separation
of content and presentation helps authors and
developers work independently, accelerating time to
market.

3 Benefits of Headless CMS for
Technical Teams

•	 Flexibility: Ability to mix and match front-end
content offerings, meaning the best user experience
can be delivered across every device, channel and
touchpoint.

•	 Resiliency: Supports organizations in future-
proofing their businesses by making it easy to
continually evolve alongside technology, no matter
what new device or platform emerges.

“Headless CMSs are ready to support technologies that will become
popular in the future. Some companies are already pushing the limits
of content delivery by incorporating more IoT devices, augmented
reality, virtual reality and more. A headless CMS built upon powerful
APIs will be more easily integrated with the newest technologies that
come out, and companies will be poised for quickly taking advantage
of new audience segments.’

- Kaya Ismail, CMSWire

10

Understanding
GraphQL
An important part of understanding how
headless CMS integrations work to provide
ultimate flexibility for businesses is GraphQL.
Known as the querying language that enables
flexible connection with APIs to support
headless CMS integrations, GraphQL enables
content management and delivery to external
systems, including third-party syndication.

11

GraphQL is a query language for APIs
and a runtime for fulfilling those queries
with existing data, providing an alternative
to the traditional RESTful style of web
services. Whereas RESTful style tends to have
looser guidelines for how an API should be
structured, GraphQL strictly structures the
communication between the client and the
server, irrespective of the specific data models
used. GraphQL’s self-describing type system
enables automation in the case of changes to
the content data model.

 What is GraphQL and why it matters for headless CMS

What is GraphQL?

https://www.brightspot.com/solutions/what-graphql-is-and-why-it-matters-for-headless-cms

12

As mentioned, taking a fully headless approach comes with its own set of potential drawbacks. For each, GraphQL
through Brightspot’s Content Business Platform offers a solution, but ultimately it will be up to developers to determine
if those solutions will make headless CMS the best option to solve their unique business challenges. Let’s look at how the
Brightspot Content Business Platform is configured to address specific considerations with respect to GraphQL.

GraphQL Considerations

Consideration Resolution
GraphQL queries aren’t small, requiring POST requests to
fetch the data.

“Automatic Persisted Queries” replace large query text with a
generated ID, to which an app can then map and query each time it’s
requested.

Since rendering of the application occurs outside the CMS, live
preview is difficult to implement; this makes it challenging,
especially for editors, to see how their publishing changes in
one system affect the presentation of the site they’re working
on.

Brightspot’s preview system is extensible, supporting custom
preview implementations for print templates from InDesign as
well as native apps. Similarly, you can specify the URL to your app,
and Brightspot will iframe it into the preview pane and pass along
a special preview ID. If the client uses that same preview ID when
making its call to the GraphQL CMS API, then Brightspot will return
data specific to the content the editor is modifying.

The front-end application that uses specific image sizes is
separate from the CMS, meaning it’s unable to access the data
it needs to run rich image editing and cropping capabilities.

Users can register a configuration file of their standard image sizes,
which will display their defined crops in the image editor and return
image URLs from the GraphQL API.

Code running in the client’s browser is completely open and
visible to the public, and anyone can view the data transferred
from APIs. GraphQL developers must be explicit about which
fields they are fetching in order to mitigate risk, but a malicious
user could still inspect the schema and make their own queries
to fetch additional data not used by the app.

To prevent data, potentially sensitive, from being inspected, your
app needs to run server side instead of client side. Or, you can
leverage Brightspot’s View System (which sits in between the
raw Database Model and the ViewModel that’s returned by the
GraphQL API) to sanitize the data on the back end, thus allowing
you to continue running your app client side if you desire.

13

GraphQL
Advantages
The benefits of a GraphQL CMS come down
to three things: simplicity, automation and
flexibility.

At the same time, GraphQL CMS APIs simplify
data gathering by enabling users to collect all
data an app requires in a single request; REST
APIs, on the other hand, require loading from
multiple URLs.

In terms of automation, GraphQL has a self-
describing type system that automatically
reflects new fields added to a content type.
This enables clients to more easily discover
which data types and fields are accessible
from the API, and which are being utilized.
The self-describing type system also supports
features like auto-complete.

Finally, GraphQL APIs operate as one
continuous evolving system, meaning adding
new fields and types doesn’t affect existing
queries, and older field versions can be
hidden. Through one single version, apps

Developer-friendly for
use with any front-end
framework, including
Brightspot’s proprietary
front end

Extensible architecture that
offers ultimate flexibility to
choose decoupled, headless
or hybrid-headless CMS as
your approach.

Integration-ready and
migration-friendly
architecture.

Custom workflows that
act as an extension of an
existing business logic.

Future-proofing for your
content business platform.

We’ve outlined
the key benefits
of headless and
GraphQL—but what
sets Brightspot
apart?

get continuous access to new features which
makes for a cleaner and better-maintained
server code. At the same time, GraphQL is
flexible in that it is not limited by a specific
storage engine, meaning users can create a
uniform API across their entire application.
Because they’re available in many languages,
GraphQL engines can also be used to write
GraphQL APIs that leverage existing data and
code.

1

2

3

4

5

Televisa
Customer
Success Spotlight

Challenge:

After leveraging several CMS platforms to
manage all of its digital properties, Televisa
decided to replatform its sites onto one
multisite, headless CMS. The ideal solution
would streamline all back-end functions, give
the developers full front-end control, and
make it easy to create and launch future sites
independently.

Solution:

Over the course of five months, Televisa’s
front-end developers and editorial teams
worked side by side with the Brightspot team
to learn Brightspot. After migrating all of its
content and creating a model with the first
headless site launch, Las Estrellas, Televisa
replatformed a total of nine sites in just five
months.

Results:

•	 50% reduction in launch times, with nine
sites launched in five months

•	 Nine CMS platforms consolidated to one
•	 35 front-end styles powered by four simple

fields

15

Getting Started: The Technical Buyer’s Checklist
Every business is different—and there is no one-size-fits-all solution to choosing the CMS that’s right for
yours. To assess which CMS solution is best for your organization, technical buyers should consider the
following factors.

Review your options—Make sure you’ve done your research and understand the differences
between traditional, decoupled, headless and hybrid CMS architectures.

Consider your team—Understanding a headless approach requires deeper technical know-
how, so determine if your team has the skill sets to successfully fulfill front-end requirements
and maintain this approach.

Identify your content business goals—Where does your organization hope to be in five or ten
years? Will you be looking to scale to different regions and touchpoints? If so, having the front-
end flexibility to easily deploy experiences on new channels is a plus.

Weigh business outcomes—Select the architecture that ensures teams (technical, publishing,
marketing, etc.) and the organization at large will experience the intended benefits of the
chosen CMS.

16

At Brightspot, we believe in front-end
freedom of choice—to be able to choose
the architecture that best suits each
individual organization’s unique needs.
That’s why we’ve designed our Brightspot
Content Business Platform to operate as a
traditional, decoupled, headless or hybrid
CMS solution.

We’re here to answer your questions and guide you on
your journey, whichever direction you may take.

17

•	 How Brightspot is designed to grow with your business and extend with
your business logic

•	 Deploying a headless, decoupled or hybrid headless CMS—all from the
same environment

•	 Our world-class Delivery Team and how you can start your POC

Next Steps
Did you find our Guide to Understanding Headless CMS & GraphQL helpful? You are
now familiar with the technical considerations to help you select the best CMS for your
organization’s unique needs. Move your business forward with a content business platform
built with an extensible architecture that’s built to solve your unique business challenges
without having to compromise.

Is the Brightspot Content Business Platform the right solution for your business?
Request a demo with a product manager to learn more about:

At Brightspot® we believe technology should enable content-focused teams to work
smarter, faster and more seamlessly to move businesses forward. With decades of

experience in publishing and media, we help companies transform their business content
and digital experiences by creating enterprise applications at scale with astonishing speed.

@BrightspotTeam www.Brightspot.com Demo@Brightspot.com

https://pages.brightspot.com/request-a-demo.html
https://pages.brightspot.com/request-a-demo.html
https://pages.brightspot.com/request-a-demo.html
https://pages.brightspot.com/request-a-demo.html
http://www.Brightspot.com
mailto:Demo@Brightspot.com

	Demo Button 3:

